首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >A PSO-Optimized Real-Time Fault-Tolerant Task Allocation Algorithm in Wireless Sensor Networks
【24h】

A PSO-Optimized Real-Time Fault-Tolerant Task Allocation Algorithm in Wireless Sensor Networks

机译:无线传感器网络中PSO优化的实时容错任务分配算法

获取原文
获取原文并翻译 | 示例

摘要

One of challenging issues for task allocation problem in wireless sensor networks (WSNs) is distributing sensing tasks rationally among sensor nodes to reduce overall power consumption and ensure these tasks finished before deadlines. In this paper, we propose a soft real-time fault-tolerant task allocation algorithm (FTAOA) for WSNs in using primary/backup (P/B) technique to support fault tolerance mechanism. In the proposed algorithm, the construction process of discrete particle swarm optimization (DPSO) is achieved through adopting a binary matrix encoding form, minimizing tasks execution time, saving node energy cost, balancing network load, and defining a fitness function for improving scheduling effectiveness and system reliability. Furthermore, FTAOA employs passive backup copies overlapping technology and is capable to determinate the mode of backup copies adaptively through scheduling primary copies as early as possible and backup copies as late as possible. To improve resource utilization, we allocate tasks to the nodes with high performance in terms of load, energy consumption, and failure ratio. Analysis and simulation results show the feasibility and effectiveness of FTAOA. FTAOA can strike a good balance between local solution and global exploration and achieve a satisfactory result within a short period of time.
机译:无线传感器网络(WSN)中任务分配问题的具有挑战性的问题之一是在传感器节点之间合理分配传感任务,以减少总体功耗并确保这些任务在截止日期之前完成。在本文中,我们提出了一种使用主备备份(P / B)技术支持无线传感器网络的软实时容错任务分配算法(FTAOA)。提出的算法通过采用二进制矩阵编码形式,最小化任务执行时间,节省节点能源成本,平衡网络负载,定义适应度函数来提高调度效率,从而实现离散粒子群优化(DPSO)的构建过程。系统可靠性。此外,FTOAA采用被动备份副本重叠技术,并能够通过尽早安排主副本和尽可能晚地安排备份副本来自适应地确定备份副本的模式。为了提高资源利用率,我们在负载,能耗和故障率方面向高性能节点分配任务。分析和仿真结果表明了FTOAA的可行性和有效性。 FTAOA可以在本地解决方案和全球勘探之间取得良好的平衡,并在短时间内取得令人满意的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号