首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >Segment-Based Anomaly Detection with Approximated Sample Covariance Matrix in Wireless Sensor Networks
【24h】

Segment-Based Anomaly Detection with Approximated Sample Covariance Matrix in Wireless Sensor Networks

机译:无线传感器网络中具有近似样本协方差矩阵的基于分段的异常检测

获取原文
获取原文并翻译 | 示例

摘要

In wireless sensor networks (WSNs), it has been observed that most abnormal events persist over a considerable period of time instead of being transient. As existing anomaly detection techniques usually operate in a point-based manner that handles each observation individually, they are unable to reliably and efficiently report such long-term anomalies appeared in an individual sensor node. Therefore, in this paper, we focus on a new technique for handling data in a segment-based manner. Considering a collection of neighbouring data segments as random variables, we determine those behaving abnormally by exploiting their spatial predictabilities and, motivated by spatial analysis, specifically investigate how to implement a prediction variance detector in a WSN. As the communication cost incurred in aggregating a covariance matrix is finally optimised using the Spearman’s rank correlation coefficient and differential compression, the proposed scheme is able to efficiently detect a wide range of long-term anomalies. In theory, comparing to the regular centralised approach, it can reduce the communication cost by approximately 80 percent. Moreover, its effectiveness is demonstrated by the numerical experiments, with a real world data set collected by the Intel Berkeley ResearchLab (IBRL).
机译:在无线传感器网络(WSN)中,已经观察到大多数异常事件会在相当长的时间内持续存在,而不是短暂的。由于现有的异常检测技术通常以逐点处理每个观察的基于点的方式运行,因此它们无法可靠,有效地报告出现在单个传感器节点中的长期异常。因此,在本文中,我们集中于一种基于段的方式处理数据的新技术。将相邻数据段的集合视为随机变量,我们通过利用它们的空间可预测性来确定异常行为,并在空间分析的推动下,专门研究如何在WSN中实现预测方差检测器。由于最终使用Spearman秩相关系数和差分压缩来优化协方差矩阵汇总中的通信成本,因此该方案能够有效地检测各种长期异常。从理论上讲,与常规集中式方法相比,它可以减少大约80%的通信成本。此外,通过数值实验证明了其有效性,该实验是由Intel Berkeley ResearchLab(IBRL)收集的真实数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号