首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >DREAM-(L)G: A Distributed Grouping-Based Algorithm for Resource Assignment for Bandwidth-Intensive Applications in the Cloud
【24h】

DREAM-(L)G: A Distributed Grouping-Based Algorithm for Resource Assignment for Bandwidth-Intensive Applications in the Cloud

机译:DREAM-(L)G:基于分布式分组的云中带宽密集型应用程序的资源分配算法

获取原文
获取原文并翻译 | 示例

摘要

Increasingly, many bandwidth-intensive applications have been ported to the cloud platform. In practice, however, some disadvantages including equipment failures, bandwidth overload and long-distance transmission often damage the QoS about data availability, bandwidth provision and access locality respectively. While some recent solutions have been proposed to cope with one or two of disadvantages, but not all. Moreover, as the number of data objects scales, most of the current offline algorithms solving a constraint optimization problem suffer from low computational efficiency. To overcome these problems, in this paper we propose an approach that aims to make fully efficient use of the cloud resources to enable bandwidth-intensive applications to achieve the desirable level of SLA-specified QoS mentioned above cost-effectively and timely. First we devise a constraint-based model that describes the relationship among data object placement, user cells bandwidth allocation, operating costs and QoS constraints. Second, we use the distributed heuristic algorithm, called DREAM-L, that solves the model and produces a budget solution to meet SLA-specified QoS. Third, we propose an object-grouping technique that is integrated into DREAM-L , called DREAM-LG, to significantly improve the computational efficiency of our algorithm. The results of hundreds of thousands of simulation-based experiments demonstrate that DREAM-LG provides much better data availability, bandwidth provision and access locality than the state-of-the-art solutions at modest cloud operating costs and within a small and acceptable range of time.
机译:越来越多的带宽密集型应用程序已移植到云平台。但是,实际上,包括设备故障,带宽过载和长距离传输在内的一些缺点通常会分别破坏有关数据可用性,带宽提供和访问位置的QoS。尽管已经提出了一些新的解决方案来解决一个或两个缺点,但不是全部。此外,随着数据对象数量的增加,解决约束优化问题的当前大多数离线算法都存在计算效率低的问题。为了克服这些问题,在本文中,我们提出一种旨在充分有效利用云资源的方法,以使带宽密集型应用程序能够经济高效,及时地达到上述SLA指定的QoS的理想水平。首先,我们设计一个基于约束的模型,该模型描述数据对象放置,用户单元带宽分配,运营成本和QoS约束之间的关系。其次,我们使用称为DREAM-L的分布式启发式算法来求解模型,并生成预算解决方案以满足SLA指定的QoS。第三,我们提出了一种对象分组技术,该技术已集成到DREAM-L中,称为DREAM-LG,可显着提高算法的计算效率。成千上万个基于仿真的实验结果表明,与最新解决方案相比,DREAM-LG以适度的云计算运营成本并在较小且可接受的范围内提供了比现有解决方案更好的数据可用性,带宽提供和访问位置。时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号