首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Workload Partitioning for Accelerating Applications on Heterogeneous Platforms
【24h】

Workload Partitioning for Accelerating Applications on Heterogeneous Platforms

机译:用于在异构平台上加速应用程序的工作负载分区

获取原文
获取原文并翻译 | 示例

摘要

Heterogeneous platforms composed of multi-core CPUs and different types of accelerators, like GPUs and Xeon Phi, are becoming popular for data parallel applications. The heterogeneity of the hardware mix and the diversity of the applications pose significant challenges to exploiting such platforms. In this situation, an effective workload partitioning between processing units is critically important for improving application performance. This partitioning is a function of the hardware capabilities as well as the application and the dataset to be used. In this work, we present a systematic approach to solve the partitioning problem. Specifically, we use modeling, profiling, and prediction techniques to quickly and correctly predict the optimal workload partitioning and the right hardware configuration to use. Our approach effectively characterizes the platform heterogeneity, efficiently determines the accurate partitioning, and easily adapts to new platforms, different application types, and different datasets. Experimental evaluation on 13 applications shows that our approach delivers excellent performance improvement of 1.2 –14.6 over a single-processor execution, and accurate partitioning with in most cases below 10 percent performance gap versus an oracle-based partitioning.
机译:由多核CPU和不同类型的加速器组成的异构平台(例如GPU和Xeon Phi)在数据并行应用中正变得越来越流行。硬件组合的异质性和应用程序的多样性对开发此类平台提出了重大挑战。在这种情况下,在处理单元之间进行有效的工作负载分配对于提高应用程序性能至关重要。此分区取决于硬件功能以及应用程序和要使用的数据集。在这项工作中,我们提出了解决分区问题的系统方法。具体来说,我们使用建模,分析和预测技术来快速正确地预测最佳工作负载分区和要使用的正确硬件配置。我们的方法有效地描述了平台的异构性,有效地确定了准确的分区,并轻松地适应了新平台,不同的应用程序类型和不同的数据集。对13个应用程序的实验评估表明,与基于oracle的分区相比,我们的方法在单处理器执行方面可提供1.2 –14.6的出色性能提升,并且在大多数情况下可进行准确分区,而性能差距在10%以下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号