首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >A Delayed Container Organization Approach to Improve Restore Speed for Deduplication Systems
【24h】

A Delayed Container Organization Approach to Improve Restore Speed for Deduplication Systems

机译:延迟容器组织方法可提高重复数据删除系统的还原速度

获取原文
获取原文并翻译 | 示例

摘要

Data deduplication has become necessary to improve the space-efficiency of large-scale distributed storage systems, as the global data have accumulated at an exponential rate and they have significant redundancy. However, the negative impact on restore performance is a main challenge for deduplication systems. One of the key reasons is that when restoring data, the low average useful data ratio (UDR) of containers wastes a considerable part of disk bandwidth to read useless data. This is mainly attributed to the uncontrollable compositions of containers. To solve this problem, we propose a new approach called Delayed Container Organization (DCO) to delay the construction of containers after accumulating some redundant data chunks in fast Non-Volatile Memory (NVM) devices to organize high-UDR containers. For example, data chunks in the intersection of some data segments can be organized together in one container to achieve both high deduplication ratio and high UDRs when restoring these related data segments. DCO is implemented in a prototype deduplication system. The experimental results indicate that compared with Capping, DCO promotes the average UDR of containers by 38.30 percent, improves the restore performance by a factor of 2.2, and achieves better space-efficiency and higher cost performance.
机译:数据重复数据删除已成为提高大规模分布式存储系统空间效率所必需的,因为全局数据已以指数速率积累并且具有显着的冗余性。但是,对还原性能的负面影响是重复数据删除系统的主要挑战。关键原因之一是,在还原数据时,容器的低平均有用数据比率(UDR)浪费了相当一部分磁盘带宽来读取无用的数据。这主要归因于不可控的容器组成。为解决此问题,我们提出了一种称为延迟容器组织(DCO)的新方法,以在快速非易失性存储器(NVM)设备中累积一些冗余数据块以组织高UDR容器后,延迟容器的构造。例如,某些数据段的交集中的数据块可以在一个容器中组织在一起,以在还原这些相关数据段时实现高重复数据删除率和高UDR。 DCO在原型重复数据删除系统中实现。实验结果表明,与封顶相比,DCO可以将容器的平均UDR提升38.30%,将还原性能提高2.2倍,并实现更好的空间效率和更高的性价比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号