首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Deadline-Constrained Cost Optimization Approaches for Workflow Scheduling in Clouds
【24h】

Deadline-Constrained Cost Optimization Approaches for Workflow Scheduling in Clouds

机译:截止时间限制的云工作流调度成本优化方法

获取原文
获取原文并翻译 | 示例

摘要

Nowadays it is becoming more and more attractive to execute workflow applications in the cloud because it enables workflow applications to use computing resources on demand. Meanwhile, it also challenges traditional workflow scheduling algorithms that only concentrate on optimizing the execution time. This paper investigates how to minimize execution cost of a workflow in clouds under a deadline constraint and proposes a metaheuristic algorithm L-ACO as well as a simple heuristic ProLiS. ProLiS distributes the deadline to each task, proportionally to a novel definition of probabilistic upward rank, and follows a two-step list scheduling methodology: rank tasks and sequentially allocates each task a service which meets the sub-deadline and minimizes the cost. L-ACO employs ant colony optimization to carry out deadline-constrained cost optimization: the ant constructs an ordered task list according to the pheromone trail and probabilistic upward rank, and uses the same deadline distribution and service selection methods as ProLiS to build solutions. Moreover, the deadline is relaxed to guide the search of L-ACO towards constrained optimization. Experimental results show that compared with traditional algorithms, the performance of ProLiS is very competitive and L-ACO performs the best in terms of execution costs and success ratios of meeting deadlines.
机译:如今,在云中执行工作流应用程序变得越来越有吸引力,因为它使工作流应用程序能够按需使用计算资源。同时,它也挑战了仅专注于优化执行时间的传统工作流调度算法。本文研究了如何在截止期限约束下最大程度地减少云中工作流的执行成本,并提出了一种元启发式算法L-ACO以及一种简单的启发式ProLiS。 ProLiS按照对概率向上排序的新定义按比例分配每个任务的截止日期,并遵循两步列表调度方法:对任务进行排序并按顺序为每个任务分配满足子截止日期的服务,并最大程度地降低成本。 L-ACO采用蚁群优化技术来进行期限受限的成本优化:蚂蚁根据信息素路径和概率向上的顺序构建有序的任务列表,并使用与ProLiS相同的期限分布和服务选择方法来构建解决方案。此外,放宽了截止日期,以指导对L-ACO的搜索朝向约束优化。实验结果表明,与传统算法相比,ProLiS的性能极具竞争力,并且L-ACO在执行成本和满足截止日期的成功率方面表现最佳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号