首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Adaptive Particle Swarm Optimization with Heterogeneous Multicore Parallelism and GPU Acceleration
【24h】

Adaptive Particle Swarm Optimization with Heterogeneous Multicore Parallelism and GPU Acceleration

机译:异构多核并行和GPU加速的自适应粒子群优化

获取原文
获取原文并翻译 | 示例

摘要

Much progress has recently been made in global optimization, with particular attention devoted to robust nature-inspired stochastic methods for difficult, high-dimensional problems. This paper presents a computational study of an adaptation of one such method, particle swarm optimization (PSO), which is analyzed for parallelization on readily-available heterogeneous parallel computational hardware: specifically, multicore technologies accelerated by graphics processing units (GPUs), as well as Intel Xeon Phi co-processors accelerated with vectorization. In this heterogeneous approach, computationally-intensive, task-parallel components are performed with multicore parallelism and data-parallel elements are executed via co-processing (GPUs or vectorization). A computationally intensive adaptive PSO technique is parallelized according to this schema. In experiments with two high-dimensional and complex functions, large speedups can be obtained. Thus, a heterogeneous approach mitigates the time complexity of PSO adaptations, suggesting that other time-intensive stochastic methods can also benefit from the techniques proposed here.
机译:最近在全局优化方面取得了很大进展,尤其是针对困难的高维问题,特别关注了鲁棒的,受自然启发的随机方法。本文介绍了一种改进方法的计算研究,即粒子群优化(PSO),该方法在易于使用的异构并行计算硬件上进行了并行化分析:具体地说,还包括由图形处理单元(GPU)加速的多核技术。英特尔至强融核协处理器随着矢量化的发展而加速。在这种异构方法中,计算密集型任务并行组件通过多核并行性执行,而数据并行元素则通过协同处理(GPU或矢量化)执行。根据此方案并行计算密集型自适应PSO技术。在具有两个高维复杂函数的实验中,可以获得较大的加速比。因此,一种异构方法减轻了PSO适应的时间复杂性,这表明其他时间密集型随机方法也可以从此处提出的技术中受益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号