首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Querying Web-Scale Knowledge Graphs Through Effective Pruning of Search Space
【24h】

Querying Web-Scale Knowledge Graphs Through Effective Pruning of Search Space

机译:通过有效修剪搜索空间来查询Web规模知识图

获取原文
获取原文并翻译 | 示例

摘要

Web-scale knowledge graphs containing billions of entities are common nowadays. Querying these graphs can be modeled as a subgraph matching problem. Since knowledge graphs are incomplete and noisy in nature, it is important to discover answers matching exactly as well as answers similar to queries. Existing graph matching algorithms usually use graph indices to accelerate query processing. For billion-node graphs, it may be infeasible to build the graph indices due to the amount of work and the memory/storage required. In this paper, we propose an efficient algorithm for finding the best k answers for a given query without precomputing graph indices. An answer’s quality is measured by a matching score that is computed online. To accelerate query processing, we propose a novel technique for bounding the matching scores during the computation. By using bounds, the low quality answers can be efficiently pruned. The bounding technique can be implemented in a distributed environment, allowing our approach to efficiently query web-scale knowledge graphs. We evaluate the effectiveness and the efficiency of our approach on real-world datasets. The result shows that our bounding technique can reduce the running time up to two orders of magnitude comparing to an approach without using bounds.
机译:如今,包含数十亿个实体的Web级知识图是很常见的。查询这些图可以建模为子图匹配问题。由于知识图本质上是不完整且嘈杂的,因此重要的是要发现完全匹配的答案以及与查询相似的答案。现有的图匹配算法通常使用图索引来加速查询处理。对于十亿个节点的图,由于工作量和所需的内存/存储量,可能无法建立图索引。在本文中,我们提出了一种无需预先计算图索引就能为给定查询找到最佳k个答案的有效算法。答案的质量由在线计算的匹配分数来衡量。为了加速查询处理,我们提出了一种在计算过程中限制匹配分数的新技术。通过使用边界,可以有效地修剪低质量的答案。边界技术可以在分布式环境中实现,从而使我们的方法可以有效地查询Web级知识图。我们评估了我们在现实数据集上的方法的有效性和效率。结果表明,与不使用边界的方法相比,我们的边界技术可以将运行时间最多减少两个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号