首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Energy-Aware Scheduling of Embarrassingly Parallel Jobs and Resource Allocation in Cloud
【24h】

Energy-Aware Scheduling of Embarrassingly Parallel Jobs and Resource Allocation in Cloud

机译:云中尴尬的并行作业和资源分配的能源感知计划

获取原文
获取原文并翻译 | 示例

摘要

In cloud computing, with full control of the underlying infrastructures, cloud providers can flexibly place user jobs on suitable physical servers and dynamically allocate computing resources to user jobs in the form of virtual machines. As a cloud provider, scheduling user jobs in a way that minimizes their completion time is important, as this can increase the utilization, productivity, or profit of a cloud. In this paper, we focus on the problem of scheduling embarrassingly parallel jobs composed of a set of independent tasks and consider energy consumption during scheduling. Our goal is to determine task placement plan and resource allocation plan for such jobs in a way that minimizes the Job Completion Time (JCT). We begin with proposing an analytical solution to the problem of optimal resource allocation with pre-determined task placement. In the following, we formulate the problem of scheduling a single job as a Non-linear Mixed Integer Programming problem and present a relaxation with an equivalent Linear Programming problem. We further propose an algorithm named TaPRA and its simplified version TaPRA-fast that solve the single job scheduling problem. Lastly, to address multiple jobs in online scheduling, we propose an online scheduler named OnTaPRA. By comparing with the start-of-the-art algorithms and schedulers via simulations, we demonstrate that TaPRA and TaPRA-fast reduce the JCT by 40-430 percent and the OnTaPRA scheduler reduces the average JCT by 60-280 percent. In addition, TaPRA-fast can be 10 times faster than TaPRA with around 5 percent performance degradation compared to TaPRA, which makes the use of TaPRA-fast very appropriate in practice.
机译:在云计算中,在完全控制底层基础结构的情况下,云提供商可以将用户作业灵活地放置在合适的物理服务器上,并以虚拟机的形式向用户作业动态分配计算资源。作为云提供商,以尽量减少其完成时间的方式调度用户作业非常重要,因为这可以提高云的利用率,生产力或利润。在本文中,我们关注由一组独立任务组成的尴尬并行作业调度问题,并考虑了调度过程中的能耗。我们的目标是以使作业完成时间(JCT)最少的方式确定此类作业的任务布置计划和资源分配计划。我们从提出具有预定任务放置的最佳资源分配问题的分析解决方案开始。在下文中,我们将调度单个作业的问题公式化为非线性混合整数规划问题,并给出了与等效线性规划问题相对应的松弛。我们进一步提出了一种名为TaPRA的算法及其简化版本TaPRA-fast,可以解决单个作业调度问题。最后,为了解决在线调度中的多个任务,我们提出了一个名为OnTaPRA的在线调度器。通过仿真与最先进的算法和调度程序进行比较,我们证明TaPRA和TaPRA-fast可以将JCT降低40-430%,而OnTaPRA调度程序可以将平均JCT降低60-280%。此外,与TaPRA相比,TaPRA-fast可以比TaPRA快10倍,性能下降约5%,这使得TaPRA-fast的使用在实践中非常合适。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号