首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Dynamic Service Placement for Mobile Micro-Clouds with Predicted Future Costs
【24h】

Dynamic Service Placement for Mobile Micro-Clouds with Predicted Future Costs

机译:具有预测的未来成本的移动微云动态服务放置

获取原文
获取原文并翻译 | 示例

摘要

Mobile micro-clouds are promising for enabling performance-critical cloud applications. However, one challenge therein is the dynamics at the network edge. In this paper, we study how to place service instances to cope with these dynamics, where multiple users and service instances coexist in the system. Our goal is to find the optimal placement (configuration) of instances to minimize the average cost over time, leveraging the ability of predicting future cost parameters with known accuracy. We first propose an offline algorithm that solves for the optimal configuration in a specific look-ahead time-window. Then, we propose an online approximation algorithm with polynomial time-complexity to find the placement in real-time whenever an instance arrives. We analytically show that the online algorithm is O(1) -competitive for a broad family of cost functions. Afterwards, the impact of prediction errors is considered and a method for finding the optimal look-ahead window size is proposed, which minimizes an upper bound of the average actual cost. The effectiveness of the proposed approach is evaluated by simulations with both synthetic and real-world (San Francisco taxi) user-mobility traces. The theoretical methodology used in this paper can potentially be applied to a larger class of dynamic resource allocation problems.
机译:移动微云有望实现对性能至关重要的云应用程序。然而,其中的一个挑战是网络边缘的动态。在本文中,我们研究了如何放置服务实例以应对这些动态,系统中多个用户和服务实例共存。我们的目标是找到实例的最佳放置(配置),以最大程度地降低一段时间内的平均成本,并利用已知精度​​预测未来成本参数的能力。我们首先提出一种离线算法,该算法可在特定的提前时间窗口内求解最佳配置。然后,我们提出了一种具有多项式时间复杂度的在线逼近算法,以在实例到达时实时找到位置。我们分析性地表明,在线算法对于广泛的成本函数族具有O(1)竞争性。然后,考虑了预测误差的影响,并提出了一种寻找最佳前瞻窗口大小的方法,该方法最大程度地降低了平均实际成本的上限。通过使用合成和真实世界(旧金山出租车)用户移动轨迹进行仿真,评估了所提出方法的有效性。本文中使用的理论方法可以潜在地应用于更大范围的动态资源分配问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号