首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Fast Connected Components Computation in Large Graphs by Vertex Pruning
【24h】

Fast Connected Components Computation in Large Graphs by Vertex Pruning

机译:通过顶点修剪在大图中快速连接组件计算

获取原文
获取原文并翻译 | 示例

摘要

Finding connected components is a fundamental task in applications dealing with graph analytics, such as social network analysis, web graph mining and image processing. The exponentially growing size of today's graphs has required the definition of new computational models and algorithms for their efficient processing on highly distributed architectures. In this paper we present cracker, an efficient iterative MapReduce-like algorithm to detect connected components in large graphs. The strategy of cracker is to transform the input graph in a set of trees, one for each connected component in the graph. Nodes are iteratively removed from the graph and added to the trees, reducing the amount of computation at each iteration. We prove the correctness of the algorithm, evaluate its computational cost and provide an extensive experimental evaluation considering a wide variety of synthetic and real-world graphs. The experimental results show that cracker consistently outperforms state-of-the-art approaches both in terms of total computation time and volume of messages exchanged.
机译:在涉及图形分析(例如社交网络分析,Web图形挖掘和图像处理)的应用程序中,找到连接的组件是一项基本任务。当今图形的大小呈指数增长,因此需要定义新的计算模型和算法,以便在高度分布式的体系结构上进行有效的处理。在本文中,我们提出了cracker,这是一种有效的类似于MapReduce的迭代算法,可用于检测大型图中的连接组件。 Cracker的策略是将输入图转换为一组树,图中的每个连接组件都对应一个树。从图中迭代地删除节点,然后将其添加到树中,从而减少了每次迭代的计算量。我们证明了该算法的正确性,评估了其计算成本,并考虑了各种合成图和实际图,提供了广泛的实验评估。实验结果表明,在总的计算时间和交换的消息量方面,cracker始终优于最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号