首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >A Declarative Optimization Engine for Resource Provisioning of Scientific Workflows in Geo-Distributed Clouds
【24h】

A Declarative Optimization Engine for Resource Provisioning of Scientific Workflows in Geo-Distributed Clouds

机译:声明式优化引擎,用于地理分布云中的科学工作流资源配置

获取原文
获取原文并翻译 | 示例

摘要

Geo-distributed clouds are becoming increasingly popular for cloud providers, and data centers with different regions often offer different prices, even for the same type of virtual machines. Resource provisioning in geo-distributed clouds is an important and complicated problem for budget and performance optimizations of scientific workflows. Scientists are facing the complexities resulted from various cloud offerings in the geo-distributed settings, severe cloud performance dynamics and evolving user requirements on performance and cost. To address those complexities, we propose a declarative optimization engine named Geco for resource provisioning of scientific workflows in geo-distributed clouds. Geco allows users to specify their workflow optimization goals and constraints of specific problems with an extended declarative language. We propose a novel probabilistic optimization approach for evaluating the declarative optimization goals and constraints to address the cloud dynamics. Additionally, we develop runtime optimizations to more effectively utilize the cloud resources at runtime. To accelerate the solution finding, Geco leverages the power of GPUs to find the solution in a fast and timely manner. Our evaluations with four common workflow provisioning problems demonstrate that, Geco is able to achieve more effective performance/cost optimizations in geo-distributed cloud environments than the state-of-the-art approaches.
机译:地理分布的云越来越受云提供商的欢迎,而且即使对于相同类型的虚拟机,具有不同区域的数据中心也常常提供不同的价格。对于科学工作流程的预算和性能优化,地理分布云中的资源配置是一个重要且复杂的问题。科学家们正面临着由地理位置分布环境中的各种云产品,严峻的云性能动态以及用户对性能和成本不断变化的需求所导致的复杂性。为了解决这些复杂性,我们提出了一个名为Geco的声明性优化引擎,用于地理分布云中科学工作流的资源配置。 Geco允许用户使用扩展的声明性语言指定其工作流程优化目标和特定问题的约束。我们提出了一种新颖的概率优化方法,用于评估声明式优化目标和约束以解决云动态问题。此外,我们开发了运行时优化,以在运行时更有效地利用云资源。为了加快解决方案的查找速度,Geco利用GPU的功能来快速,及时地找到解决方案。我们对四个常见工作流供应问题的评估表明,与最新方法相比,Geco在地理分布的云环境中能够实现更有效的性能/成本优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号