首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Online Scheduling of Task Graphs on Heterogeneous Platforms
【24h】

Online Scheduling of Task Graphs on Heterogeneous Platforms

机译:异构平台上任务图的在线调度

获取原文
获取原文并翻译 | 示例

摘要

Modern computing platforms commonly include accelerators. We target the problem of scheduling applications modeled as task graphs on hybrid platforms made of two types of resources, such as CPUs and GPUs. We consider that task graphs are uncovered dynamically, and that the scheduler has information only on the available tasks, i.e., tasks whose predecessors have all been completed. Each task can be processed by either a CPU or a GPU, and the corresponding processing times are known. Our study extends a previous $4sqrt{m/k}$4m/k-competitive online algorithm by Amaris et al. [1] , where $m$m is the number of CPUs and $k$k the number of GPUs ($mgeq k$m >= k). We prove that no online algorithm can have a competitive ratio smaller than $sqrt{m/k}$m/k. We also study how adding flexibility on task processing, such as task migration or spoliation, or increasing the knowledge of the scheduler by providing it with information on the task graph, influences the lower bound. We provide a $(2sqrt{m/k}+1)$(2m/k+1)-competitive algorithm as well as a tunable combination of a system-oriented heuristic and a competitive algorithm; this combination performs well in practice and has a competitive ratio in $Theta (sqrt{m/k})$(m/k). We also adapt all our results to the case of multiple types of processors. Finally, simulations on different sets of task graphs illustrate how the instance properties impact the performance of the studied algorithms and show that our proposed tunable algorithm performs the best among the online algorithms in almost all cases and has even performance close to an offline algorithm.
机译:现代计算平台通常包括加速器。我们针对在由两种资源(例如CPU和GPU)组成的混合平台上调度建模为任务图的应用程序的问题。我们认为任务图是动态发现的,并且调度程序仅具有有关可用任务的信息,即,其前任任务已全部完成的任务。每个任务都可以由CPU或GPU处理,并且相应的处理时间是已知的。我们的研究扩展了Amaris等人先前的$ 4 sqrt {m / k} $ 4m / k竞争性在线算法。 [1],其中$ m $ m是CPU的数量,$ k $ k是GPU的数量($ m geq k $ m> = k)。我们证明,没有任何一种在线算法可以具有小于$ sqrt {m / k} $ m / k的竞争比。我们还研究了如何在任务处理(例如任务迁移或任务分配)上增加灵活性,或通过在任务图上提供信息来增加调度程序的知识,如何影响下限。我们提供$(2 sqrt {m / k} +1)$(2m / k + 1)竞争算法,以及面向系统的启发式算法和竞争性算法的可调组合;这种组合在实践中表现良好,并且具有$ Theta( sqrt {m / k})$(m / k)的竞争比。我们还将所有结果调整为适用于多种类型处理器的情况。最后,对不同任务图集的仿真说明了实例属性如何影响所研究算法的性能,并表明我们提出的可调算法在几乎所有情况下的在线算法中均表现最佳,并且性能甚至接近脱机算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号