首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Collaborative Optimization of Service Composition for Data-Intensive Applications in a Hybrid Cloud
【24h】

Collaborative Optimization of Service Composition for Data-Intensive Applications in a Hybrid Cloud

机译:混合云中数据密集型应用程序的服务组合协同优化

获取原文
获取原文并翻译 | 示例

摘要

The multi-valued evaluations of quality of service (QoS), the complicated constraints between cloud services (CSs) and the collaborative resource assignments add many difficulties to the problem of CS composition for data-intensive applications (DiA) in a hybrid cloud (CSCD-HC). Solving the CSCD-HC problem has become a challenging task due to the uncertain QoS, the diverse hardware configurations and the flexible pricing about CSs. This paper proposes a collaborative optimization approach for CSCD-HC. This approach models a DiA as a role-based collaboration (RBC) system and employs the environments-classes, agents, roles, groups, and objects (E-CARGO) model to formalize the CSCD-HC problem with complicated constraints. To deal with the multi-valued QoS evaluations, this paper exploits the cloud model theory to analyze the performance of CSs, and presents a new method utilizing the Mahalanobis distance to improve the similarity calculation of QoS cloud models. Based on it, the qualification of candidate CSs can be precisely measured for supporting CS composition. A solution via the IBM ILOG CPLEX optimization package is put forward to solve the CSCD-HC problem. The experimental results demonstrate that the proposed approach is effective and feasible for optimizing CSCD-HC.
机译:服务质量(QoS)的多值评估,云服务(CS)之间的复杂约束以及协作资源分配为混合云(CSCD)中的数据密集型应用(DiA)的CS组成问题增加了许多困难-HC)。由于不确定的QoS,多样化的硬件配置以及CS的灵活定价,解决CSCD-HC问题已成为一项具有挑战性的任务。本文提出了一种针对CSCD-HC的协作优化方法。这种方法将DiA建模为基于角色的协作(RBC)系统,并使用环境类,代理,角色,组和对象(E-CARGO)模型来形式化具有复杂约束的CSCD-HC问题。针对多值QoS评估问题,本文利用云模型理论对CS的性能进行了分析,提出了一种利用马哈拉诺比斯距离改进QoS云模型相似度计算的新方法。基于此,可以精确测量候选CS的资格以支持CS组成。提出了通过IBM ILOG CPLEX优化软件包的解决方案来解决CSCD-HC问题。实验结果表明,该方法是优化CSCD-HC的有效方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号