首页> 外文期刊>IEEE Transactions on Parallel and Distributed Systems >Heterogeneity Aware Workload Management in Distributed Sustainable Datacenters
【24h】

Heterogeneity Aware Workload Management in Distributed Sustainable Datacenters

机译:分布式可持续数据中心中的异构感知工作负载管理

获取原文
获取原文并翻译 | 示例

摘要

The tremendous growth of cloud computing and large-scale data analytics highlight the importance of reducing datacenter power consumption and environmental impact of brown energy. While many Internet service operators have at least partially powered their datacenters by green energy, it is challenging to effectively utilize green energy due to the intermittency of renewable sources, such as solar or wind. We find that the geographical diversity of internet-scale services can be carefully scheduled to improve the efficiency of applying green energy in datacenters. In this paper, we propose a holistic heterogeneity-aware cloud workload management approach, sCloud, that aims to maximize the system goodput in distributed self-sustainable datacenters. sCloud adaptively places the transactional workload to distributed datacenters, allocates the available resource to heterogeneous workloads in each datacenter, and migrates batch jobs across datacenters, while taking into account the green power availability and QoS requirements. We formulate the transactional workload placement as a constrained optimization problem that can be solved by nonlinear programming. Then, we propose a batch job migration algorithm to further improve the system goodput when the green power supply varies widely at different locations. Finally, we extend sCloud by integrating a flexible batch job manager to dynamically control the job execution progress without violating the deadlines. We have implemented sCloud in a university cloud testbed with real-world weather conditions and workload traces. Experimental results demonstrate sCloud can achieve near-to-optimal system performance while being resilient to dynamic power availability. sCloud with the flexible batch job management approach outperforms a heterogeneity-oblivious approach by 37 percent in improving system goodput and 33 percent in reducing QoS violations.
机译:云计算和大规模数据分析的迅猛发展突显了降低数据中心功耗和棕色能源对环境的影响的重要性。尽管许多互联网服务运营商至少部分地通过绿色能源为其数据中心供电,但是由于可再生能源(如太阳能或风能)的间歇性,有效利用绿色能源仍是一项挑战。我们发现可以谨慎地计划Internet规模服务的地理多样性,以提高在数据中心中应用绿色能源的效率。在本文中,我们提出了一种整体异构感知云工作负载管理方法sCloud,该方法旨在最大程度地提高分布式自持数据中心的系统吞吐量。 sCloud将事务性工作负载自适应地放置到分布式数据中心,将可用资源分配给每个数据中心中的异构工作负载,并在数据中心之间迁移批处理作业,同时考虑到绿色电源的可用性和QoS要求。我们将事务性工作负载放置公式化为可以通过非线性规划解决的约束优化问题。然后,我们提出了一个批处理作业迁移算法,以在绿色电源在不同位置变化很大时进一步提高系统生产率。最后,我们通过集成灵活的批处理作业管理器来扩展sCloud,以动态控制作业执行进度,而不会违反截止日期。我们已经在具有真实世界天气条件和工作负载跟踪的大学云测试平台中实施了sCloud。实验结果表明,sCloud可以实现接近最佳的系统性能,同时对动态电源可用性具有弹性。带有灵活批处理作业管理方法的sCloud在提高系统吞吐量方面和在减少QoS违规方面分别提高了37%和37%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号