首页> 外文期刊>International Journal of Parallel, Emergent and Distributed Systems >An improved initialisation method for K-means algorithm optimised by Tissue-like P system
【24h】

An improved initialisation method for K-means algorithm optimised by Tissue-like P system

机译:一种改进的组织样P系统K均值算法初始化方法

获取原文
获取原文并翻译 | 示例

摘要

The K-means algorithm gets widely used due to its simplicity and effectiveness. But it is sensitive to the selection of initial cluster centres. In this paper, we proposed an initialisation method to select initial clustering centres for K-means algorithm. Furthermore, because of the boundedness of the initialisation method, we modified it and designed a Tissue-like P system to realise the new method. The experiments are operated on five UCI datasets and the results proved that the new initialisation method based on the designed Tissue-like P system is effective.
机译:K-Means算法由于其简单和有效性而被广泛使用。 但它对初始集群中心的选择很敏感。 在本文中,我们提出了一种选择初始化方法,用于选择K-Means算法的初始聚类中心。 此外,由于初始化方法的有界性,我们修改并设计了一种组织类似的P系统以实现新方法。 实验在五个UCI数据集上运行,结果证明了基于设计的组织样P系统的新初始化方法是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号