首页> 外文期刊>Parallel Algorithms and Applications >GPU parallelization strategies for metaheuristics: a survey
【24h】

GPU parallelization strategies for metaheuristics: a survey

机译:元启发式的GPU并行化策略:一项调查

获取原文
获取原文并翻译 | 示例

摘要

Metaheuristics have been showing interesting results in solving hard optimization problems. However, they become limited in terms of effectiveness and runtime for high dimensional problems. Thanks to the independency of metaheuristics components, parallel computing appears as an attractive choice to reduce the execution time and to improve solution quality. By exploiting the increasing performance and programability of graphics processing units (GPUs) to this aim, GPU-based parallel metaheuristics have been implemented using different designs. Recent results in this area show that GPUs tend to be effective co-processors for leveraging complex optimization problems. In this survey, mechanisms involved in GPU programming for implementing parallel metaheuristics are presented and discussed through a study of relevant research papers.
机译:在解决困难的优化问题时,元启发法已显示出有趣的结果。但是,它们在解决高维问题的有效性和运行时间方面受到限制。由于元启发式方法组件的独立性,并行计算似乎是减少执行时间和提高解决方案质量的诱人选择。通过利用图形处理单元(GPU)不断提高的性能和可编程性,已使用不同的设计实现了基于GPU的并行元启发式技术。该领域的最新结果表明,GPU往往是利用复杂优化问题的有效协处理器。在这项调查中,通过对相关研究论文的研究来介绍和讨论与GPU编程有关的用于实现并行元启发式的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号