首页> 外文期刊>Journal of Applied Physics >Characterizing solid-state ignition of runaway chemical reactions in Ni-AI nanoscale multilayers under uniform heating
【24h】

Characterizing solid-state ignition of runaway chemical reactions in Ni-AI nanoscale multilayers under uniform heating

机译:均匀加热下Ni-Al纳米多层膜中失控化学反应的固态点火特性

获取原文
获取原文并翻译 | 示例

摘要

Nanoscale layers of nickel and aluminum can mix rapidly to produce runaway reactions. While self-propagating high temperature synthesis reactions have been observed for decades, the solid-state ignition of these reactions has been challenging to study. Particularly elusive is characterization of the low-temperature chemical mixing that occurs just prior to the ignition of the runaway reaction. Characterization can be challenging due to inhomogeneous microstructures, uncontrollable heat losses, and the nonuniform distribution of heat throughout the material prior to ignition. To reduce the impact of these variables, we heat multilayered Ni/Al foils in a highly uniform manner and report ignition temperatures as low as 245 ℃ for heating rates ranging from 2000 ℃/s to 50 000℃/s. Igniting in this way reveals that there are four stages before the reaction is complete: heating to an ignition temperature, low temperature solid-state mixing, a separate high temperature solid-state mixing, and liquid-state mixing. Multiple bilayer spacings, heating rates, and heating times are compared to show that the ignition temperature is a function of the bilayer spacing. A symmetric numerical diffusion model is used to show that there is very little chemical mixing in the first 10 ms of heating but significant mixing after 50 ms. These predictions suggest that ignition temperatures should increase for the slowest heating rates but this trend could not be identified clearly. The modeling was also used to examine the kinetic parameters governing the early stages of solid-state diffusion and suggest that grain boundary diffusion is dominant.
机译:镍和铝的纳米级层可以快速混合以产生失控反应。尽管数十年来一直观察到自蔓延的高温合成反应,但研究这些反应的固态点火一直是一项挑战。特别难以捉摸的是恰好在失控反应着火之前发生的低温化学混合的特征。由于微观结构不均匀,热量损失不可控以及点火前整个材料的热量分布不均匀,因此表征可能具有挑战性。为了减少这些变量的影响,我们以高度均匀的方式加热多层Ni / Al箔,并报告在2000℃/ s至50000℃/ s的加热速率下,点火温度低至245℃。以这种方式点火表明反应完成之前有四个阶段:加热至着火温度,低温固态混合,单独的高温固态混合和液态混合。比较了多个双层间隔,加热速率和加热时间,以表明点火温度是双层间隔的函数。对称数值扩散模型用于显示在加热的前10毫秒中几乎没有化学混合,而在50毫秒后有明显的化学混合。这些预测表明,对于最慢的加热速率,点火温度应提高,但这种趋势无法清楚地确定。该模型还用于检查控制固态扩散早期阶段的动力学参数,并表明晶界扩散占主导地位。

著录项

  • 来源
    《Journal of Applied Physics》 |2015年第13期|135101.1-135101.8|共8页
  • 作者单位

    Johns Hopkins University, 3400N. Charles, St., Baltimore, Maryland 21218, USA;

    Johns Hopkins University, 3400N. Charles, St., Baltimore, Maryland 21218, USA;

    Johns Hopkins University, 3400N. Charles, St., Baltimore, Maryland 21218, USA;

    Johns Hopkins University, 3400N. Charles, St., Baltimore, Maryland 21218, USA;

    Johns Hopkins University, 3400N. Charles, St., Baltimore, Maryland 21218, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号