首页> 外文期刊>Image and Vision Computing >Face recognition using discriminant locality preserving projections
【24h】

Face recognition using discriminant locality preserving projections

机译:使用判别性局部保留投影的人脸识别

获取原文
获取原文并翻译 | 示例

摘要

Locality Preserving Projections (LPP) is a linear projective map that arises by solving a variational problem that optimally preserves the neighborhood structure of the data set. Though LPP has been applied in many domains, it has limits to solve recognition problem. Thus, Discriminant Locality Preserving Projections (DLPP) is presented in this paper. The improvement of DLPP algorithm over LPP method benefits mostly from two aspects: One aspect is that DLPP tries to find the subspace that best discriminates different face classes by maximizing the between-class distance, while minimizing the within-class distance; The other aspect is that DLPP reduces the energy of noise and transformation difference as much as possible without sacrificing much of intrinsic difference. In the experiments, DLPP achieves better face recognition performance than LPP.
机译:局部性保留投影(LPP)是线性投影图,它是通过解决可最佳保留数据集邻域结构的变异问题而产生的。尽管LPP已经在许多领域得到应用,但是它在解决识别问题上还是有局限性的。因此,本文提出了判别局部性保留投影(DLPP)。相对于LPP方法,DLPP算法的改进主要从两个方面受益:一方面,DLPP试图通过最大化类间距离,同时最小化类内距离,找到能够最佳地区分不同面部类别的子空间。另一个方面是DLPP在不牺牲很多固有差异的情况下,尽可能降低了噪声能量和变换差异。在实验中,DLPP比LPP具有更好的人脸识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号