首页> 外文期刊>Optimization Methods and Software >On handling cutting planes in interior-point methods for solving semi-definite relaxations of binary quadratic optimization problems
【24h】

On handling cutting planes in interior-point methods for solving semi-definite relaxations of binary quadratic optimization problems

机译:关于用内点方法处理切割平面以解决二元二次优化问题的半定松弛

获取原文
获取原文并翻译 | 示例

摘要

We describe an improved technique for handling large numbers of cutting planes when using an interior-point method for the solution of linear and semi-definite programming relaxations of combinatorial optimization problems. The approach combines an infeasible primal-dual interior-point algorithm with a cutting-plane scheme that does not solve successive relaxations to optimality, but adds and removes cuts at intermediate iterates based on indicators for cut violation and feasibility of the associated slacks. The slack variables of added cuts are initialized using a recently proposed interior-point warm-start technique that relaxes the interiority condition on the original primal-dual variables and enables a restart from the current iterate without additional centring or correction steps. Our computational tests on relaxations of the maximum-cut and single-row facility-layout problem demonstrate that this new scheme is robust for both unconstrained and constrained binary quadratic problems and that its performance is superior to solving only the final relaxation with all relevant cuts known in advance.View full textDownload full textKeywordscombinatorial optimization, semi-definite programming, cutting-plane methods, interior-point algorithms, warm starts, maximum-cut, facility layoutRelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/10556788.2010.544308
机译:当使用内点方法求解组合优化问题的线性和半确定规划松弛时,我们描述了一种用于处理大量切割平面的改进技术。该方法将不可行的原始对偶内点算法与切割平面方案相结合,该方案不能解决连续松弛到最优性的问题,而是基于指示违规和相关松弛的可行性的指标在中间迭代中添加和移除切割。使用最近提出的内点热启动技术初始化添加的切口的松弛变量,该技术可以放松原始原始对偶变量的内部条件,并允许从当前迭代中重新开始,而无需其他居中或校正步骤。我们对最大割和单排设施布局问题的松弛的计算测试表明,该新方案对于无约束和有约束的二进制二次问题均具有鲁棒性,并且其性能优于仅解决所有已知割裂的最终松弛问题。查看全文下载全文关键字组合优化,半定程序设计,切平面方法,内点算法,热启动,最大切割,设施布局相关var addthis_config = {ui_cobrand:“泰勒和弗朗西斯在线”,servicescompact:“ citeulike,netvibes,twitter,technorati,美味,linkedin,facebook,stumbleupon,digg,google,更多”,发布:“ ra-4dff56cd6bb1830b”};添加到候选列表链接永久链接http://dx.doi.org/10.1080/10556788.2010.544308

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号