首页> 外文期刊>Optimization and Engineering >A local search method for costly black-box problems and its application to CSP plant start-up optimization refinement
【24h】

A local search method for costly black-box problems and its application to CSP plant start-up optimization refinement

机译:一种昂贵的黑盒子问题的本地搜索方法及其在CSP工厂启动优化细化的应用

获取原文
获取原文并翻译 | 示例

摘要

A variety of engineering applications are tackled as black-box optimization problems where a computationally expensive and possibly noisy function is optimized over a continuous domain. In this paper we present a derivative-free local method which is well-suited for such problems, and we describe its application to the optimization of the start-up phase of an innovative Concentrated Solar Power (CSP) plant. The method, referred to as rqlif, exploits a regularized quadratic model and a linear implicit filtering strategy so as to be parsimonious in terms of function evaluations. After assessing the performance of rqlif on a set of analytical test problems in comparison with three well-known local algorithms, we apply it in conjunction with a global algorithm based on RBFs interpolation to the start-up optimization of the CSP plant developed in the PreFlexMS H2020 project. For the test problems, rqlif provides good quality solutions in a limited number of function evaluations. For the application, the global-local strategy yields a substantial improvement with respect to the reference solution and significantly reduces the thermo-mechanical stress suffered by the plant components.
机译:各种工程应用程序被视为黑匣子优化问题,其中在连续域中优化了计算昂贵和可能嘈杂的函数。在本文中,我们提出了一种无衍生的本地方法,这是非常适合这种问题的局部方法,我们将其应用于优化创新集中的太阳能(CSP)植物的启动阶段的应用。该方法称为RQLIF,利用正则化二次模型和线性隐式滤波策略,以便在功能评估方面被解析。在与三种众所周知的本地算法相比,评估RQLIF对一组分析测试问题的性能之后,我们将其与基于RBFS插值的全局算法一起应用于前曲目中开发的CSP工厂的启动优化H2020项目。对于测试问题,RQLIF在有限数量的功能评估中提供了良好的质量解决方案。对于申请,全球局部策略对参考溶液产生了大幅改善,并显着降低了植物组分患病的热机械应力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号