首页> 外文期刊>Optimization and Engineering >A generalized methodology for multidisciplinary design optimization using surrogate modelling and multifidelity analysis
【24h】

A generalized methodology for multidisciplinary design optimization using surrogate modelling and multifidelity analysis

机译:使用代理建模和多尺寸分析的多学科设计优化的广义方法

获取原文
获取原文并翻译 | 示例

摘要

The advantages of multidisciplinary design are well understood, but not yet fully adopted by the industry where methods should be both fast and reliable. For such problems, minimum computational cost while providing global optimality and extensive design information at an early conceptual stage is desired. However, such a complex problem consisting of various objectives and interacting disciplines is associated with a challenging design space. This provides a large pool of possible designs, requiring an efficient exploration scheme with the ability to provide sufficient feedback early in the design process. This paper demonstrates a generalized optimization framework with rapid design space exploration capabilities in which a Multifidelity approach is directly adjusted to the emerging needs of the design. The methodology is developed to be easily applicable and efficient in computationally expensive multidisciplinary problems. To accelerate such a demanding process, Surrogate Based Optimization methods in the form of both Radial Basis Function and Kriging models are employed. In particular, a modification of the standard Kriging approach to account for Multifidelity data inputs is proposed, aiming to increasing its accuracy without increasing its training cost. The surrogate optimization problem is solved by a Particle Swarm Optimization algorithm and two constraint handling methods are implemented. The surrogate model modifications are visually demonstrated in a ID and 2D test case, while the Rosenbrock and Sellar functions are used to examine the scalability and adaptability behaviour of the method. Our particular Multiobjective formulation is demonstrated in the common RAE2822 airfoil design problem. In this paper, the framework assessment focuses on our infill sampling approach in terms of design and objective space exploration for a given computational cost.
机译:多学科设计的优势得到了很好的理解,但行业尚未完全采用,方法应该快速可靠。对于此类问题,需要最低计算成本,同时提供在早期概念阶段提供全局最优性和广泛的设计信息。然而,这种复杂的问题包括各种目标和互动学科与具有挑战性的设计空间相关。这提供了大量可能的设计,需要有效的探索方案,其能够在设计过程中提前提供足够的反馈。本文展示了一种具有快速设计空间探索能力的广义优化框架,其中将多尺寸方法直接调整到设计的新兴需求。该方法是在计算昂贵的多学科问题中轻松应用和高效的。为了加速如此苛刻的过程,采用径向基函数和Kriging模型的代理基于优化方法。特别地,提出了修改标准Kriging方法以解释多尺度数据输入,旨在提高其准确性而不会增加其培训成本。替代优化问题由粒子群优化算法解决,实现了两个约束处理方法。在ID和2D测试用例中可视化替代模型修改,而RosenBrock和Sellar功能用于检查该方法的可伸缩性和适应性行为。在普通的RAE2822翼型设计问题中证明了我们特殊的多目标配方。在本文中,框架评估侧重于我们的设计和客观空间探索的填充方法,以便给定的计算成本。

著录项

  • 来源
    《Optimization and Engineering》 |2020年第3期|723-759|共37页
  • 作者单位

    School of Aerospace Transport and Manufacturing Propulsion Engineering Centre Cranfield University Bedfordshire MK430AL UK;

    Computational Aerodynamics Design School of Aerospace Transport and Manufacturing Propulsion Engineering Centre Cranfield University Bedfordshire MK430AL UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号