首页> 外文期刊>Optimization and Engineering >The complexity of routing in hierarchical PNNI networks
【24h】

The complexity of routing in hierarchical PNNI networks

机译:分层PNNI网络中路由的复杂性

获取原文
获取原文并翻译 | 示例

摘要

We study the complexity of computing a route in a hierarchical PNNI network, with H levels of hierarchy, in which N nodes are grouped into clusters at each level. We determine cluster sizes that minimize an upper bound on the total time for all the path computations required to compute a route. Our model casts the problem as a nonlinear convex optimization problem, and employs nonlinear duality theory. We derive explicit closed form upper bounds on the minimum total path computation time, as a function of N, for H = 2 and H = 3, and show how the upper bound, and the optimal cluster sizes, can be computed for any H. We provide a conjecture on the complexity of PNNI routing for any H, and use this conjecture to determine the limit of the complexity as H → ∞. We also prove that the minimum total path computation time is a non-increasing function of H. Our results provide counterexamples to a claim by Van Mieghem that a related top-down hierarchical routing method has lower computational complexity.
机译:我们研究了在具有H个层次结构的层次结构PNNI网络中计算路由的复杂性,其中N个节点在每个层次结构中被分组为集群。我们确定群集大小,以使计算路线所需的所有路径计算的总时间上限最小化。我们的模型将该问题转换为非线性凸优化问题,并采用非线性对偶理论。对于H = 2和H = 3,我们得出最小总路径计算时间的显式封闭形式上限,作为N的函数,并显示如何为任何H计算上限和最佳聚类大小。我们对任何H的PNNI路由的复杂度提供一个猜想,并使用此猜想确定复杂度的极限,即H→∞。我们还证明了最小总路径计算时间不是H的递增函数。我们的结果为Van Mieghem声称相关的自上而下的分层路由方法具有较低的计算复杂度提供了反例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号