首页> 外文期刊>Optimization and Engineering >Asymptotic bounds on the globally optimal positions of orthogonal stiffeners for rectangular plates in elastostatic bending
【24h】

Asymptotic bounds on the globally optimal positions of orthogonal stiffeners for rectangular plates in elastostatic bending

机译:弹性静力弯曲矩形板正交加劲肋全局最优位置的渐近界

获取原文
获取原文并翻译 | 示例

摘要

The present paper treats the problem of finding the asymptotic bounds for the globally optimal locations of orthogonal stiffeners minimizing the compliance of a rectangular plate in elastostatic bending. The essence of the paper is the utilization of a method of analysis of orthogonally stiffened rectangular plates first presented by Mazurkiewicz in 1962, and obtained herein in a closed form for several special cases. Asymptotic expansions of the expressions for the deflection field of a stiffened plate are used to derive limit-case globally optimal stiffening layouts for highly flexible and highly rigid stiffeners. A central result obtained in this work is an analytical proof of the fact that an array of flexible enough orthogonal stiffeners of any number, stiffening a simply-supported rectangular plate subjected to any lateral loading, is best to be put in the form of exactly two orthogonal stiffeners, one in each direction.
机译:本论文处理的问题是找到正交加劲肋的全局最优位置的渐近边界,从而使弹性静力弯曲中矩形板的柔度最小。本文的实质是利用一种由Mazurkiewicz于1962年首次提出的正交正交矩形板的分析方法,并在几种特殊情况下以封闭形式获得。加劲板挠曲场表达式的渐近展开式用于导出极限情况的全局最优加劲布局,用于高度柔性和高刚度的加劲肋。在这项工作中获得的主要结果是对以下事实的分析证明:以下事实最好是将任意数量的足够柔性的正交加劲肋阵列加劲成两个正交的加劲肋,每个方向一个。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号