首页> 外文期刊>Optimization and Engineering >Calibration by optimization without using derivatives
【24h】

Calibration by optimization without using derivatives

机译:通过优化校准而不使用导数

获取原文
获取原文并翻译 | 示例
           

摘要

Applications in engineering frequently require the adjustment of certain parameters. While the mathematical laws that determine these parameters often are well understood, due to time limitations in every day industrial life, it is typically not feasible to derive an explicit computational procedure for adjusting the parameters based on some given measurement data. This paper aims at showing that in such situations, direct optimization offers a very simple approach that can be of great help. More precisely, we present a numerical implementation for the local minimization of a smooth function subject to upper and lower bounds without relying on the knowledge of the derivative of f. In contrast to other direct optimization approaches the algorithm assumes that the function evaluations are fairly cheap and that the rounding errors associated with the function evaluations are small. As an illustration, this algorithm is applied to approximate the solution of a calibration problem arising from an engineering application. The algorithm uses a Quasi-Newton trust region approach adjusting the trust region radius with a line search. The line search is based on a spline function which minimizes a weighted least squares sum of the jumps in its third derivative. The approximate gradients used in the Quasi-Newton approach are computed by central finite differences. A new randomized basis approach is considered to generate finite difference approximations of the gradient which also allow for a curvature correction of the Hessian in addition to the Quasi-Newton update. These concepts are combined with an active set strategy. The implementation is public domain; numerical experiments indicate that the algorithm is well suitable for the calibration problem of measuring instruments that prompted this research. Further preliminary numerical results suggest that an approximate local minimizer of a smooth non-convex function f depending on variables can be computed with a number of iterations that grows moderately with n.
机译:工程中的应用经常需要调整某些参数。尽管由于每天工业生活中的时间限制,通常很容易理解确定这些参数的数学定律,但基于某些给定的测量数据来推导用于调整参数的显式计算程序通常是不可行的。本文旨在说明在这种情况下,直接优化提供了一种非常简单的方法,可能会很有帮助。更准确地说,我们提出了一种数值实现方法,用于在不依赖于f的导数的情况下,使函数的上下界最小化。与其他直接优化方法相反,该算法假定功能评估相当便宜,并且与功能评估相关的舍入误差很小。作为说明,该算法可用于近似解决工程应用引起的校准问题。该算法使用准牛顿信任区方法通过线搜索来调整信任区半径。线搜索基于样条函数,该函数将三阶导数中的跳转的加权最小二乘和最小化。拟牛顿法中使用的近似梯度是通过中心有限差分计算的。一种新的随机基础方法被认为可以生成梯度的有限差分近似值,除了准牛顿更新之外,该方法还允许对Hessian进行曲率校正。这些概念与活动集策略结合在一起。该实现是公共领域;数值实验表明,该算法非常适合于促使该研究的测量仪器的校准问题。进一步的初步数值结果表明,取决于变量的光滑非凸函数f的近似局部极小值可以通过随着n适度增长的多次迭代来计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号