首页> 外文期刊>Optical Switching and Networking >Energy and QoS aware resource allocation for heterogeneous sustainable cloud datacenters
【24h】

Energy and QoS aware resource allocation for heterogeneous sustainable cloud datacenters

机译:异构可持续云数据中心的能源和QoS感知资源分配

获取原文
获取原文并翻译 | 示例

摘要

As the demand on Internet services such as cloud and mobile cloud services drastically increases recently, the energy consumption consumed by the cloud datacenters has become a burning topic. The deployment of renewable energy generators such as PhotoVoltaic (PV) and wind farms is an attractive candidate to reduce the carbon footprint and, achieve the sustainable cloud datacenters. However, current studies have focused on geographical load balancing of Virtual Machine (VM) requests to reduce the cost of brown energy usage, while most of them have ignored the heterogeneity of power consumption of each cloud datacenter and the incurred performance degradation by VM co-location. In this paper, we propose Evolutionary Energy Efficient Virtual Machine Allocation (EEE-VMA), a Genetic Algorithm (GA) based metaheuristic which supports a power heterogeneity aware VM request allocation of multiple sustainable cloud datacenters. This approach provides a novel metric called powerMark which diagnoses the power efficiency of each cloud datacenter in order to reduce the energy consumption of cloud datacenters more efficiently. Furthermore, performance degradation caused by VM co-location and bandwidth cost between cloud service users and cloud datacenters are considered to avoid the deterioration of Quality-of-Service (QoS) required by cloud service users by using our proposed cost model. Extensive experiments including real-world traces based simulation and the implementation of cloud testbed with a power measuring device are conducted to demonstrate the energy efficiency and performance assurance of the proposed EEE-VMA approach compared to the existing VM request allocation strategies. (C) 2016 Elsevier B.V. All rights reserved.
机译:随着近来对诸如云和移动云服务之类的互联网服务的需求急剧增加,云数据中心消耗的能源消耗已成为一个紧迫的话题。部署PhotoVoltaic(PV)和风电场等可再生能源发电机是减少碳足迹并实现可持续云数据中心的有吸引力的候选人。但是,当前的研究集中在虚拟机(VM)请求的地理负载平衡上,以减少棕色能源的使用成本,而大多数研究却忽略了每个云数据中心的功耗异质性以及VM协同导致的性能下降。位置。在本文中,我们提出了进化节能虚拟机分配(EEE-VMA),一种基于遗传算法(GA)的元启发式方法,它支持多个可持续的云数据中心的功率异质性VM请求分配。此方法提供了一种称为powerMark的新颖度量,该度量可诊断每个云数据中心的电源效率,以便更有效地减少云数据中心的能耗。此外,通过使用我们建议的成本模型,考虑了由VM托管和云服务用户与云数据中心之间的带宽成本导致的性能下降,以避免云服务用户所需的服务质量(QoS)下降。进行了广泛的实验,包括基于真实世界的跟踪模拟以及使用功率测量设备进行云测试平台的实施,以证明与现有VM请求分配策略相比,所提出的EEE-VMA方法的能源效率和性能保证。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号