首页> 外文期刊>Optical memory & neural networks >Comparing Ambient Temperature Account Methods in Neural Network Based City Short-Term Load Forecasting
【24h】

Comparing Ambient Temperature Account Methods in Neural Network Based City Short-Term Load Forecasting

机译:基于神经网络的城市短期负荷预测中环境温度核算方法的比较

获取原文
获取原文并翻译 | 示例

摘要

We offer a neural network model for forecasting the next day's hourly electric load of a city. We use a few ambient temperature account methods in the research to see how each of them affects the forecasting accuracy. Optimal meta-parameters are determined to tune the neural network to give best forecasts. Among such meta-parameters are the data history depth, data seasonality radius and regularization parameter of neural network weights. A multilayer perceptron is used to make forecasts. It is shown that the electric load can be forecasted most accurately when an additional neural network forecasts hourly ambient temperatures using actual hourly temperatures of the previous day and the weather station's temperature predictions for the forecast day.
机译:我们提供了一个神经网络模型来预测城市第二天的每小时用电量。我们在研究中使用了几种环境温度计算方法,以了解每种方法如何影响预测准确性。确定最佳元参数以调整神经网络以提供最佳预测。这些元参数包括数据历史深度,数据季节性半径和神经网络权重的正则化参数。多层感知器用于进行预测。结果表明,当一个附加的神经网络使用前一天的实际小时温度和气象站对天气预报日的温度预测来预测小时环境温度时,可以最准确地预测电负载。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号