首页> 外文期刊>Optical memory & neural networks >A Method of Small Object Detection Based on Improved Deep Learning
【24h】

A Method of Small Object Detection Based on Improved Deep Learning

机译:一种基于改进深度学习的小物体检测方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a parallel SSD (Single Shot MultiBox Detector) fusion network based on inverted residual structure (IR-PSN) is proposed to solve the problems of the lack of extracted feature information and the unsatisfactory effect of small object detection by deep learning. Firstly, the Inverted Residual Structure (IR) is adopted into the SSD network to replace the pooling layer. The improved SSD network is called deep network of IR-PSN to extract high-level feature information of the image. Secondly, a shallow network based on the inverted residual structure is constructed to extract low-level feature information of the image. Finally, the shallow network is fused with the deep network to avoid the lack of small object feature information and improve the detection rate of small object. The experimental results show that the proposed method has satisfied results for small object detection under the premise of ensuring the accuracy rate P and recall rate R of the comprehensive object detection.
机译:本文提出了一种基于反相残差结构(IR-PSN)的并行SSD(单拍摄多焦点检测器)融合网络,以解决缺乏提取的特征信息和小物体检测对深度学习的问题的问题。首先,采用倒置的残余结构(IR)在SSD网络中以替换汇集层。改进的SSD网络被称为IR-PSN的深网络以提取图像的高级特征信息。其次,构造基于倒置残余结构的浅网络以提取图像的低级特征信息。最后,浅网络与深网络融合以避免缺少小物体特征信息并提高小物体的检测率。实验结果表明,该方法在确保综合物体检测的准确率P和召回速率R的前提下,该方法对小物体检测有满意的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号