首页> 外文期刊>Optical Communications and Networking, IEEE/OSA Journal of >Convolutional neural network-based optical performance monitoring for optical transport networks
【24h】

Convolutional neural network-based optical performance monitoring for optical transport networks

机译:基于卷积神经网络的光传输网络光学性能监控

获取原文
获取原文并翻译 | 示例

摘要

To address the open and diverse situation of future optical networks, it is necessary to find a methodology to accurately estimate the value of a target quantity in an optical performance monitor (OPM) depending on the high-level monitoring objectives declared by the network operator. Using machine learning techniques partially enables a trainable OPM; however, it still requires the feature selection before the learning process. Here, we show the OPM that uses a convolutional neural network (CNN) with a digital coherent receiver to deal with the abundance of training data required for convergence and pre-processing of input data by human engineers needed for feature (representation) extraction. To proof a concept of the OPM based on CNN, we experimentally demonstrate that a CNN can learn an accurate optical signal-to-noise-ratio (OSNR) estimation functionality from asynchronously sampled data right after intradyne coherent detection. We evaluate bias errors and standard deviations of a CNN-based OSNR estimator for six combinations of modulation formats and symbol rates and confirm that the proposed OSNR estimator can provide accurate estimation results (<0.4 dB bias errors and standard deviations). Additionally, we investigate filters in the trained CNN to reveal what the CNN learned in the training phase. This is a valuable step toward designing autonomous "self-driving" optical networks.
机译:为了解决未来光网络的开放和多样化的情况,有必要找到一种方法,以根据网络运营商宣布的高级监视目标,准确估算光性能监视器(OPM)中目标数量的值。使用机器学习技术可以部分实现可训练的OPM;但是,它仍然需要在学习过程之前选择功能。在这里,我们展示了使用卷积神经网络(CNN)和数字相干接收器的OPM,以处理人类工程师进行特征(表示)提取所需的输入数据的融合和预处理所需的大量训练数据。为了证明基于CNN的OPM的概念,我们通过实验证明,在进行达因相干检测之后,CNN可以从异步采样的数据中学习准确的光信噪比(OSNR)估计功能。我们针对调制格式和符号率的六种组合评估了基于CNN的OSNR估计器的偏置误差和标准偏差,并确认所提出的OSNR估计器可以提供准确的估计结果(<0.4 dB偏置误差和标准偏差)。此外,我们调查了经过训练的CNN中的过滤器,以揭示CNN在训练阶段学到的知识。这是设计自主“自动驾驶”光网络的重要一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号