首页> 外文期刊>Optical Communications and Networking, IEEE/OSA Journal of >Machine-learning-based prediction for resource (Re)allocation in optical data center networks
【24h】

Machine-learning-based prediction for resource (Re)allocation in optical data center networks

机译:基于机器学习的光学数据中心网络中资源(重新)分配预测

获取原文
获取原文并翻译 | 示例

摘要

Traffic prediction and utilization of past information are essential requirements for intelligent and efficient management of resources, especially in optical data center networks (ODCNs), which serve diverse applications. In this paper, we consider the problem of traffic aggregation in ODCNs by leveraging the predictable or exact knowledge of application-specific information and requirements, such as holding time, bandwidth, traffic history, and latency. As ODCNs serve diverse flows (e.g., long/ elephant and short/mice), we utilize machine learning (ML) for prediction of time-varying traffic and connection blocking inODCNs.Furthermore,withthe predictedmean service time, passed time is utilized to estimate the mean residual life (MRL) of an active flow (connection). The MRL information is used for dynamic traffic aggregation while allocating resources to a new connection request. Additionally, blocking rate is predicted for a future time interval based on the predicted traffic and past blocking information, which is used to trigger a spectrumreallocation process (also called defragmentation) to reduce spectrum fragmentation resulting from the dynamic connection setup and tearing-down scenarios. Simulation results showthatML-based prediction and initial setup times (history) of traffic flows can be used to further improve connection blocking and resource utilization in space-division multiplexed ODCNs.
机译:流量预测和对过去信息的利用是智能,高效管理资源的基本要求,尤其是在为各种应用服务的光学数据中心网络(ODCN)中。在本文中,我们通过利用对特定于应用程序的信息和要求(例如保持时间,带宽,流量历史记录和延迟)的可预测或确切了解,来考虑ODCN中的流量聚合问题。由于ODCN服务于各种流量(例如长/象和短/小鼠),因此我们利用机器学习(ML)来预测ODCN的时变流量和连接阻塞。此外,利用预测的平均服务时间,可以使用经过时间来估计活动流(连接)的平均剩余寿命(MRL)。 MRL信息用于动态流量聚合,同时将资源分配给新的连接请求。此外,基于预测的流量和过去的阻塞信息,可以为将来的时间间隔预测阻塞率,该阻塞率信息用于触发频谱重新分配过程(也称为碎片整理),以减少由于动态连接设置和拆除场景而导致的频谱碎片。仿真结果表明,基于ML的业务流预测和初始建立时间(历史)可用于进一步改善空分复用ODCN中的连接阻塞和资源利用率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号