首页> 外文期刊>Numerische Mathematik >$L^2$-Approximations of power and logarithmic functions with applications to numerical conformal mapping
【24h】

$L^2$-Approximations of power and logarithmic functions with applications to numerical conformal mapping

机译:$ L ^ 2 $-幂和对数函数的逼近及其在数值共形映射中的应用

获取原文
获取原文并翻译 | 示例

摘要

For a bounded Jordan domain G with quasiconformal boundary L, two-sided estimates are obtained for the error in best $L^2(G)$ polynomial approximation to functions of the form $(z-tau)^{beta}, {beta}>-1$ , and $(z-tau)^mlog^l(z-tau), m>-1, lne 0$ , where $tauin L$ . Furthermore, Andrievskii's lemma that provides an upper bound for the $L^infty(G)$ norm of a polynomial $p_n$ in terms of the $L^2(G)$ norm of $p_n^prime$ is extended to the case when a finite linear combination (independent of n) of functions of the above form is added to $p_n$ . For the case when the boundary of G is piecewise analytic without cusps, the results are used to analyze the improvement in rate of convergence achieved by using augmented, rather than classical, Bieberbach polynomial approximants of the Riemann mapping function of G onto a disk. Finally, numerical results are presented that illustrate the theoretical results obtained.
机译:对于具有拟保形边界L的有界Jordan域G,获得了以$(L-tau)^ {beta},{beta形式的函数的最佳$ L ^ 2(G)$多项式近似的误差的两侧估计。 }>-1 $和$(z-tau)^ mlog ^ l(z-tau),m> -1,lne 0 $,其中$ tauin L $。此外,根据多项式$ p_n ^ prime $的$ L ^ 2(G)$范数提供多项式$ p_n $的$ L ^ infty(G)$范数的上限的Andrievskii引理被扩展到这种情况将上述形式的函数的有限线性组合(独立于n)添加到$ p_n $时。对于G的边界是分段分析而没有尖峰的情况,将结果用于分析通过使用G的Riemann映射函数的增强的而不是经典的Bieberbach多项式近似值在磁盘上实现的收敛速度的提高。最后,数值结果表明了所获得的理论结果。

著录项

  • 来源
    《Numerische Mathematik》 |2002年第3期|503-542|共40页
  • 作者单位

    Department of Mathematics University of South Florida 4202 East Fowler Ave. Tampa FL 33620 USA;

    e-mail: vmaymesk@math.usf.edu;

    Institute for Constructive Mathematics Department of Mathematics University of South Florida 4202 East Fowler Ave. Tampa FL 33620 USA;

    e-mail: esaff@math.usf.edu;

    Department of Mathematics and Statistics University of Cyprus P.O. Box 20537 Nicosia Cyprus;

    e-mail: nikos@ucy.ac.cy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mathematics Subject Classification (1991): 30E10; 65E05; 30C30;

    机译:数学学科分类(1991):30E10;65E05;30C30;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号