The modified Levenberg-Marquardt method is used for simultaneous estimation of decomposition kinetic coefficients and temperature-dependent thermophysical properties of charring ablators with a moving boundary over a wide temperature range. No prior information is used for the functional forms of the unknown thermal conductivity and specific heat. The procedure used differs from the traditional one in that it does not require prescribed time-dependent surface heat flux, recession rate, and pyrolysis gas mass flow rate. These time-dependent quantities may recover during an iterative procedure. The measured temperatures are simulated numerically by the Charring material ablation code, which accounts for unsteady ablation. The method can determine unknown parameters in an efficient manner with reasonable accuracy, without exact advance knowledge about the net surface heat flux, surface recession, and gas flux through the material.View full textDownload full textRelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/10407790903508129
展开▼