首页> 外文期刊>Numerical Algorithms >Restarted generalized Krylov subspace methods for solving large-scale polynomial eigenvalue problems
【24h】

Restarted generalized Krylov subspace methods for solving large-scale polynomial eigenvalue problems

机译:重新开始求解广义多项式特征值问题的广义Krylov子空间方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a generalized Krylov subspace ${mathcal{G}_{m}(mathbf{A};mathbf{u})}$ based on a square matrix sequence {A j } and a vector sequence {u j }. Next we present a generalized Arnoldi procedure for generating an orthonormal basis of ${mathcal{G}_{m}(mathbf{A};mathbf{u})}$ . By applying the projection and the refined technique, we derive a restarted generalized Arnoldi method and a restarted refined generalized Arnoldi method for solving a large-scale polynomial eigenvalue problem (PEP). These two methods are applied to solve the PEP directly. Hence they preserve essential structures and properties of the PEP. Furthermore, restarting reduces the storage requirements. Some theoretical results are presented. Numerical tests report the effectiveness of these methods.
机译:在本文中,我们基于方阵序列{A j }和向量介绍了广义Krylov子空间$ {mathcal {G} _ {m}(mathbf {A}; mathbf {u})} $序列{uj }。接下来,我们提出一个通用的Arnoldi过程,用于生成$ {mathcal {G} _ {m}(mathbf {A}; mathbf {u})} $的正交基。通过应用投影和精细化技术,我们导出了重新启动的广义Arnoldi方法和重新启动的精细化广义Arnoldi方法,以解决大规模多项式特征值问题(PEP)。这两种方法直接用于解决PEP。因此,它们保留了PEP的基本结构和属性。此外,重新启动减少了存储需求。提出了一些理论结果。数值测试报告了这些方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号