首页> 外文期刊>Numerical Algorithms >A direct variable step block multistep method for solving general third-order ODEs
【24h】

A direct variable step block multistep method for solving general third-order ODEs

机译:直接变量阶块多步法求解一般三阶ODE

获取原文
获取原文并翻译 | 示例

摘要

This paper discusses a direct three-point implicit block multistep method for direct solution of the general third-order initial value problems of ordinary differential equations using variable step size. The method is based on a pair of explicit and implicit of Adams type formulas which are implemented in PE(CE) t mode and in order to avoid calculating divided difference and integration coefficients all the coefficients are stored in the code. The method approximates the numerical solution at three equally spaced points simultaneously. The Gauss Seidel approach is used for the implementation of the proposed method. The local truncation error of the proposed scheme is studied. Numerical examples are given to illustrate the efficiency of the method.
机译:本文讨论了一种直接三点隐式块多步法,该方法可以使用可变步长直接求解常微分方程的一般三阶初值问题。该方法基于在PE(CE) t 模式下实现的一对Adams型公式的显式和隐式,并且为了避免计算除差和积分系数,所有系数都存储在码。该方法同时在三个等距的点上近似数值解。高斯·赛德尔方法用于实施所提出的方法。研究了该方案的局部截断误差。数值例子说明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号