首页> 外文期刊>Nuclear science and engineering >A Robust, Relaxation-Free Multiphysics Iteration Scheme for CMFD-Accelerated Neutron Transport k-Eigenvalue Calculations-Ⅰ: Theory
【24h】

A Robust, Relaxation-Free Multiphysics Iteration Scheme for CMFD-Accelerated Neutron Transport k-Eigenvalue Calculations-Ⅰ: Theory

机译:CMFD加速中子输送k-eigenvalue计算 - Ⅰ:理论

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper presents a new robust scheme for coupled physics nuclear reactor calculations. We focus specifically on high-fidelity whole-core transport calculations with coarse mesh finite difference (CMFD) coupled to thermal hydraulics. These simulations traditionally employ rthe Picard iteration for the coupled solution, where it has been observed that the use of CMFD (or nonlinear diffusion acceleration) is detrimental to the overall convergence of the coupled problem. Moreover, (1) if the acceleration equations are tightly converged every iteration, the overall multiphysics iteration becomes less stable and (2) properly loosening the convergence criteria of the acceleration equations at each iteration can stabilize the overall scheme. In this paper, we develop a Fourier analysis for a simplified CMFD-accelerated neutron transport problem with feedback from flux-dependent cross sections to provide a theoretical explanation for, and gain insight into, the aforementioned observations. Furthermore, we establish the theoretical relationship between relaxation and partial convergence of the low-order problem. Using this result, a relaxation-free iteration scheme is then proposed, with a formula to determine the nearly optimal partial convergence of the low-order diffusion problem. The new CMFD method is called the nearly optimally partially converged coarse mesh finite difference (NOPC-CMFD) method. It is shown theoretically that the NOPC-CMFD method in problems with feedback has stability properties comparable to CMFD in problems without feedback and requires no relaxation factor, i.e., is relaxation free. The results presented in this paper provide a theoretical foundation for the development of a robust multiphysics iteration scheme for nuclear reactor modeling. The implementation of the method and application to various test cases are presented in the companion paper.
机译:本文提出了一种用于耦合物理核反应堆计算的新的鲁棒方案。我们专注于具有粗内网有限差(CMFD)的高保真的全核传输计算,加上热液压。这些模拟传统上采用了耦合解决方案的图解方法,其中已经观察到使用CMFD(或非线性扩散加速)对耦合问题的整体收敛性是有害的。此外,(1)如果加速方程被每次迭代紧密地融合,则整体多体迭代变得更稳定,并且(2)适当地松开每次迭代时的加速度方程的收敛标准可以稳定整个方案。在本文中,我们对简化的CMFD加速中子传输问题进行了傅立叶分析,通过助焊剂依赖性横截面的反馈提供了一种理论解释,并进入上述观察的洞察力。此外,我们建立了低阶问题的松弛与部分收敛性的理论关系。使用该结果,然后提出一种放松的迭代方案,用公式确定低阶扩散问题的几乎最佳的部分收敛。新的CMFD方法称为几乎最佳地融合的粗网格有限差(NOPC-CMFD)方法。理论上,在没有反馈的情况下,理论上,在反馈的问题中具有与CMFD的问题的NOPC-CMFD方法具有与CMFD相当的稳定性,并且不需要松弛因子,即放松。本文提出的结果为核反应堆建模的鲁棒多体迭代方案提供了一种理论基础。在伴随纸上呈现了对各种测试用例的方法和应用的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号