首页> 外文期刊>Nuclear science and engineering >On the Regularity Order of the Pointwise Uncollided Angular Flux and Asymptotic Convergence of the Discrete Ordinates Approximation of the Scalar Flux
【24h】

On the Regularity Order of the Pointwise Uncollided Angular Flux and Asymptotic Convergence of the Discrete Ordinates Approximation of the Scalar Flux

机译:关于尖端的undolided角通量和离散角度的渐近趋同的规律性顺序坐标坐标逼近标量通量

获取原文
获取原文并翻译 | 示例

摘要

To determine the angular discretization error asymptotic convergence rate of the uncollided scalar flux computed with the discrete ordinates (S_N) method, a comprehensive theory of the regularity order with respect to the azimuthal angle of the exact pointwise S_N uncollided angular flux is derived based on the integral form of the transport equation in two-dimensional Cartesian geometry. With this theory, the regularity order of the pointwise S_N uncollided angular flux can be estimated for a given problem configuration. Our new theory inspired a novel Modified Simpson's (MS) quadrature that converges the uncollided scalar flux faster than any of the traditional quadratures by avoiding integration across points of irregularity in the azimuthal angle. Numerical results successfully verify our new theory in four variants of a test configuration, and the angular discretization errors in the corresponding scalar flux computed with conventional angular quadrature types and with our new quadrature types are found to converge with different orders. The error convergence rates obtained with traditional quadrature types are limited by the regularity order of the exact angular flux and the quadrature's integration intervals while our new MS quadrature types converge with order two to four times higher than traditional quadratures. A detailed study of oscillations observed in certain quadrature errors is provided by introducing the effective length of the irregular interval and the associated oscillating function.
机译:为了确定uncollided标量的角离散误差渐近收敛率通量计算与uncollided角通量基于所导出的离散坐标(S_N)的方法,该规律性顺序相对于确切的逐点S_N的方位角的综合理论在二维笛卡尔几何输运方程的积分形式。与此理论,逐点S_N的规律性顺序uncollided角通量可估计对于给定的问题的构造。我们的新理论的启发改性辛普森(MS)正交会聚的uncollided标量通量比任何传统的正交的快通过避免在方位角跨越不规则的点整合的小说。数值结果成功地验证我们的新理论四种变体的测试配置的,并在相应的标量通量与常规角的正交类型和与我们的新的正交类型的计算出的角度离散化误差被发现与不同的顺序收敛。与传统的积分类型得到的误差收敛率是由精确角通量和正交的积分间隔的规律性顺序而我们新的MS正交类型的顺序收敛比传统的求积高出两到四倍的限制。在某些正交误差观察到振荡的详细的研究是通过将不规则间隔的有效长度和相关的振荡函数提供的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号