首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. B, Beam Interactions with Materials and Atoms >Advanced 65 nm CMOS devices fabricated using ultra-low energy plasma doping
【24h】

Advanced 65 nm CMOS devices fabricated using ultra-low energy plasma doping

机译:使用超低能量等离子体掺杂制造的先进65 nm CMOS器件

获取原文
获取原文并翻译 | 示例
       

摘要

For leading edge CMOS and DRAM technologies, plasma doping (PLAD) offers several unique advantages over conventional beamline implantation. For ultra-low energy source and drain extensions (SDE), source drain contact and high dose poly doping implants PLAD delivers 2-5x higher throughput compared to beamline implanters. In this work we demonstrate process performance and process integration benefits enabled by plasma doping for advanced 65 run CMOS devices. Specifically, p(+) ultra-shallow junctions formed with BF3 plasma doping have superior X-j/R-s, characteristics to beamline implants and yield up to 30% lower R-s for 20 nm X-j while using standard spike anneal with ramp-up rate of 75 degrees C/s. These results indicate that PLAD could extend applicability of standard spike anneal by at least one technology node past 65 nm. A CMOS split lot has been run to investigate process integration advantages unique to plasma doping and to determine CMOS device characteristics. Device data measured on 65 nm transistors fabricated with offset spacers indicate that devices with SDE formed by plasma doping have superior V, roll-off characteristics arguably due to improved lateral gate-overlap of PLAD SDE junctions. Furthermore, offset spacers could be eliminated in 65 nm devices with PLAD SDE implants while still achieving V-t roll-off and I-on-I-off performance at least equivalent to control devices with offset spacers and SDE formed by beamline implantation. Thus, another advantage of PLAD is simplified 65 nm CMOS manufacturing process flow due to elimination of offset spacers. Finally, we present process transfer from beamline implants to PLAD for several applications, including SDE and gate poly doping with very high productivity. (c) 2005 Elsevier B.V. All rights reserved.
机译:对于领先的CMOS和DRAM技术,等离子体掺杂(PLAD)与传统的束线注入相比具有几个独特的优势。对于超低能量源极和漏极扩展(SDE),源极漏极接触和高剂量多晶硅掺杂植入物PLAD的吞吐量比束线植入器高2-5倍。在这项工作中,我们演示了先进的65英寸CMOS器件通过等离子体掺杂实现的工艺性能和工艺集成优势。具体来说,用BF3等离子体掺杂形成的p(+)/ n超浅结具有优异的Xj / Rs,具有束线注入的特性,在使用20纳米Xj的标准尖峰退火时,其束线注入的Rs降低高达30%。 75摄氏度/秒。这些结果表明,PLAD可以将标准尖峰退火的适用性扩展至少一个技术节点超过65 nm。已经进行了CMOS批量生产,以研究等离子掺杂独有的工艺集成优势并确定CMOS器件的特性。在用偏移垫片制造的65 nm晶体管上测量的器件数据表明,通过等离子体掺杂形成的SDE器件具有优异的V滚降特性,这可以归因于PLAD SDE结的横向栅极重叠得到了改善。此外,在具有PLAD SDE注入的65 nm器件中,可以消除偏置间隔物,同时仍能实现V-t滚降和I-on-I-off性能,至少与带有偏置间隔物和通过束线注入形成的SDE的控制器件等效。因此,PLAD的另一个优点是由于消除了偏置间隔物,简化了65 nm CMOS制造工艺流程。最后,我们介绍了从束线注入到PLAD的工艺转移,适用于多种应用,包括SDE和高生产率的栅极多晶硅掺杂。 (c)2005 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号