首页> 外文学位 >Ultra-low Power/Energy Harvesting CMOS Sensor Designs in Wireless Sensing Platforms.
【24h】

Ultra-low Power/Energy Harvesting CMOS Sensor Designs in Wireless Sensing Platforms.

机译:无线传感平台中的超低功耗/能量收集CMOS传感器设计。

获取原文
获取原文并翻译 | 示例

摘要

The recent rapid development in wireless communication technologies has opened up the market for wireless sensing systems, which is attracting more and more attentions both in the industry and academia. In order to perform accurate sensing using multiple sensors, more calibration requirement and higher power consumption are expected. This inevitably increases the unit cost of wireless sensing nodes. One of the possibilities is that instead of using discrete sensors which will increase system volume and power consumption, integrated sensors can be used to achieve miniaturized size and reduced power requirement, which are of utmost importance in wireless sensing platforms deployment. Another hurdle for massive deployment of wireless sensing platforms is the limited energy capacity of batteries, which determines the system lifetime and hence increases the maintenance cost. Energy harvesting techniques are therefore generally introduced to solve this problem.;In this research, various aspects of sensor design requirements in wireless sensing platform, especially passive ones where the system energy is obtained from the environment, is presented. Based on the choice of CMOS compatibility for low-cost implementations, two different case studies for implementing sensors in power/energy limited wireless sensing systems, namely CMOS temperature sensor designs in passive RFID tag and CMOS image sensor design in passive wireless image sensor network, are identified and studied.;Various aspects of sensor designs in passively powered wireless sensing platforms are discussed and analyzed. First, power limited/energy limited sensing system is classified. As a result, the choice between low power or low energy sensor architectures can be duly made to achieve optimal system performance. The possibility of harvesting energy using reconfigurable sensor array can also be exploited for improved system power/energy efficiency.;For CMOS temperature sensor design in passive RFID tag, the temperature dependence of delay generated using MOSFET operating in all operating regions (i.e. saturation, linear and subthreshold) are studied, and optimization to achieve high linearity for reduced calibration consideration is presented. The use of sensor gain compensation scheme in BJT-based temperature sensor to suppress the inaccuracy introduced due to process variation is proposed. A time-domain differential readout scheme, that can achieve ultra-low power operation and improve SNR, is also proposed. We have successfully implemented and experimentally characterized all the designs to validate our ideas, both in the sensor block level and the RFID tag system level. For all the designs, a required power budget of as low as hundreds of nW and an acceptable sensing inaccuracy of less than +/-1°C are achieved.;For CMOS image sensor design in wireless sensing platform, a systematic approach to generate a high output voltage using integrated photodiodes in standard CMOS technology is presented. This approach has the benefit that it can be readily implemented in bulk-CMOS, without the use of extra mask or special process. As a consequence, it can be useful in realizing low-cost single-chip energy harvesting systems. We have also explored the use of reconfigurable sensor array in CMOS image sensor to harvest energy during the idle period, so that energy can be first stored and then later released for system use. Apart from that, reconfigurable full/half resolution readout and two-level quantization schemes are also proposed to reduce the readout power/energy requirement. Both the sensing and energy harvesting capabilities of the fabricated image sensor are characterized, and an estimated duty cycle of 0.2% can be achieved if the power generated by the sensor array is to compensate for the power consumed. This can be useful for developing a hybrid battery-assisted system for extended system lifetime, or even a truly self-powered CMOS image sensor system for theoretically unlimited lifetime.;To conclude, this research studies the role of different sensor designs in wireless sensing platforms to address the important issues of ultra-low power consumption, calibration consideration and energy harvesting capability in such systems.
机译:无线通信技术的最新快速发展为无线感测系统打开了市场,无线感测系统正吸引着越来越多的行业和学术界的关注。为了使用多个传感器执行精确感测,期望更多的校准要求和更高的功耗。这不可避免地增加了无线传感节点的单位成本。一种可能性是,与其使用会增加系统体积和功耗的离散传感器,不如使用集成传感器来实现小型化和降低功率需求,这在无线传感平台的部署中至关重要。大规模部署无线传感平台的另一个障碍是电池的能量容量有限,这决定了系统的使用寿命,从而增加了维护成本。因此,通常引入能量收集技术来解决该问题。在本研究中,提出了无线传感平台中传感器设计要求的各个方面,尤其是从环境中获取系统能量的无源传感器。基于针对低成本实施方案的CMOS兼容性选择,在功率/能量受限的无线传感系统中实施传感器的两个不同案例研究,即无源RFID标签中的CMOS温度传感器设计和无源无线图像传感器网络中的CMOS图像传感器设计,进行识别和研究。讨论并分析了无源供电无线传感平台中传感器设计的各个方面。首先,对功率限制/能量限制感测系统进行分类。结果,可以适当地在低功率或低能量传感器架构之间进行选择,以实现最佳的系统性能。还可以利用可重构传感器阵列收集能量的可能性,以提高系统功率/能量效率。对于无源RFID标签中的CMOS温度传感器设计,在所有工作区域(例如饱和,线性)工作的MOSFET产生的延迟的温度依赖性和亚阈值),并提出了实现高线性度以减少校准考虑的优化。提出了在基于BJT的温度传感器中使用传感器增益补偿方案来抑制由于工艺变化而引起的误差。还提出了一种时域差分读出方案,该方案可以实现超低功耗工作并改善SNR。我们已经成功实施并通过实验对所有设计进行了特征化,以验证我们的想法,无论是在传感器模块级别还是在RFID标签系统级别。对于所有设计,都实现了低至数百nW的所需功率预算和小于+/- 1°C的可接受传感精度。对于无线传感平台中的CMOS图像传感器设计,一种系统方法可以生成提出了使用标准CMOS技术中的集成光电二极管实现高输出电压的方法。这种方法的优点是可以在大容量CMOS中轻松实现,而无需使用额外的掩模或特殊工艺。结果,在实现低成本单芯片能量收集系统中可能很有用。我们还探索了在CMOS图像传感器中使用可重配置传感器阵列来收集空闲期间的能量的方法,以便可以先存储能量,然后再释放能量以供系统使用。除此之外,还提出了可重构的全/半分辨率读数和两级量化方案,以减少读数功率/能量需求。表征了所制造的图像传感器的感测和能量收集能力,并且如果传感器阵列产生的功率用于补偿所消耗的功率,则可以实现估计的0.2%的占空比。这对于开发可延长系统寿命的混合电池辅助系统,甚至对于理论上无限的寿命,甚至是真正的自供电CMOS图像传感器系统都非常有用。总而言之,本研究研究了不同传感器设计在无线传感平台中的作用。解决此类系统中超低功耗,校准注意事项和能量收集功能的重要问题。

著录项

  • 作者

    Law, Man Kay.;

  • 作者单位

    Hong Kong University of Science and Technology (Hong Kong).;

  • 授予单位 Hong Kong University of Science and Technology (Hong Kong).;
  • 学科 Engineering Electronics and Electrical.;Engineering Computer.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号