...
首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. B, Beam Interactions with Materials and Atoms >Considerations on accelerator systems requirements and limitations for μ-probe applications
【24h】

Considerations on accelerator systems requirements and limitations for μ-probe applications

机译:关于加速器系统要求和μ探针应用限制的考虑

获取原文
获取原文并翻译 | 示例
           

摘要

It is commonly accepted that the requirements for μ-probe applications on beam brightness and energy spread favour single-ended accelerators. With the Singletron™ systems HVE can offer high beam brightness (74 A m~(-2) rad~(-2) eV~(-1)) and low energy spread as well as high terminal voltage stability (~10 ppm). On the other hand,Tandetron™ systems have the advantage that no ion source maintenance is required in the tank as opposed to single-ended systems. Especially for the larger single-ended systems needed to obtain higher terminal voltages, source maintenance is time consuming. Tandem accelerators provide higher beam energies at the same terminal voltage. This offers the possibility of greater probe depths e.g. larger than 1 mm for protons (10 MeV) or over 300 μm for He~3 (15 MeV) in biological samples, which can be desired in single-cell irradiation experiments. Single-ended and tandem systems exhibit several important differences. First, of course the difference in ion sources, as for a tandem system a negative ion source is needed. The development of these sources has led to the availability of the multicusp ion source that combines low beam emittance with high current. Furthermore, related to the stripping process needed with a tandem accelerator, energy straggling of the ions increases the energy spread and small angle scattering of the ions tends to lower the beam brightness. At HVE, we investigated the influence of the small angle scattering on the beam brightness. Various ion optical approaches were compared and it was concluded that a multicusp ion source provides the possibility to minimise the degradation in the beam brightness due to small angle scattering of the ions. It is expected that a beam brightness of 10-50 A m~(-2) rad~(-2) eV~(-1) can be achieved with the Tandetron™ accelerator systems.
机译:普遍认为,μ探针应用对光束亮度和能量扩散的要求偏向于单端加速器。使用Singletron™系统,HVE可以提供高光束亮度(74 A m〜(-2)rad〜(-2)eV〜(-1)),低能量散布以及高终端电压稳定性(〜10 ppm)。另一方面,Tandetron™系统的优势在于,与单端系统相比,无需在水箱中维护离子源。特别是对于需要更高端子电压的大型单端系统,电源维护非常耗时。串联加速器在相同的端子电压下提供更高的电子束能量。这提供了更大的探测深度的可能性,例如对于生物样品中的质子(10 MeV)大于1 mm,对于He〜3(15 MeV)大于300μm,这在单细胞照射实验中可能是需要的。单端和串联系统显示出几个重要的区别。首先,当然是离子源的差异,因为对于串联系统而言,需要负离子源。这些离子源的发展导致了多尖峰离子源的可用性,该离子源结合了低束发射和高电流。此外,与串联加速器所需的剥离过程有关,离子的能量散逸增加了能量散布,并且离子的小角度散射倾向于降低束的亮度。在HVE,我们研究了小角度散射对光束亮度的影响。比较了各种离子光学方法,得出的结论是,多尖峰离子源提供了使由于离子的小角度散射而导致的光束亮度下降最小化的可能性。预期使用Tandetron™加速器系统可实现10-50 A m〜(-2)rad〜(-2)eV〜(-1)的光束亮度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号