首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. B, Beam Interactions with Materials and Atoms >Modeling charged defects, dopant diffusion and activation mechanisms for TCAD simulations using kinetic Monte Carlo
【24h】

Modeling charged defects, dopant diffusion and activation mechanisms for TCAD simulations using kinetic Monte Carlo

机译:使用动力学蒙特卡洛为TCAD模拟建模带电缺陷,掺杂剂扩散和激活机制

获取原文
获取原文并翻译 | 示例
           

摘要

This work will show how the kinetic Monte Carlo (KMC) technique is able to successfully model the defects and diffusion of dopants in Si-based materials for advanced microelectronic devices, especially for non-equilibrium conditions. Charge states of point defects and paired dopants are also simulated, including the dependency of the diffusivities on the Fermi level and charged particle drift coming from the electric field. The KMC method is used to simulate the diffusion of the point defects, and formation and dissolution of extended defects, whereas a quasi-atomistic approach is used to take into account the carrier densities. The simulated mechanisms include the kick-out diffusion mechanism, extended defect formation and the activation/deactivation of dopants through the formation of impurity clusters. Damage accumulation and amorphization are also taken into account. Solid phase epitaxy regrowth is included, and also the dopants redistribution during recrystallization of the amorphized regions. Regarding the charged defects, the model considers the dependencies of charge reactions, electric bias, pairing and break-up reactions according to the local Fermi level. Some aspects of the basic physical mechanisms have also been taken into consideration: how to smooth out the atomistic dopant point charge distribution, avoiding very abrupt and unphysical charge profiles and how to implement the drift of charged particles into the existing electric field. The work will also discuss the efficiency, accuracy and relevance of the method, together with its implementation in a technology computer aided design process sirriulator.
机译:这项工作将展示动力学蒙特卡洛(KMC)技术如何能够成功地为先进的微电子器件,尤其是在非平衡条件下,对硅基材料中的掺杂物的缺陷和扩散进行建模。还模拟了点缺陷和成对的掺杂剂的电荷状态,包括扩散率对费米能级的依赖性以及来自电场的带电粒子漂移。 KMC方法用于模拟点缺陷的扩散以及扩展缺陷的形成和消散,而准原子方法用于考虑载流子密度。模拟的机制包括踢出扩散机制,扩展的缺陷形成以及通过杂质簇的形成来激活/去活掺杂剂。还考虑了损伤累积和非晶化。包括固相外延再生,以及非晶区再结晶过程中的掺杂物再分布。关于带电缺陷,该模型根据局部费米能级考虑了电荷反应,电偏置,配对和分解反应的相关性。还考虑了基本物理机制的某些方面:如何使原子掺杂点电荷分布变得平滑,避免非常突然和不物理的电荷分布以及如何使带电粒子漂移到现有电场中。这项工作还将讨论该方法的效率,准确性和相关性,以及该方法在技术计算机辅助设计过程中的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号