首页> 外文学位 >Dopant-dopant and dopant-defect processes underlying activation kinetics.
【24h】

Dopant-dopant and dopant-defect processes underlying activation kinetics.

机译:潜在的激活动力学是掺杂剂-掺杂剂和掺杂剂-缺陷过程。

获取原文
获取原文并翻译 | 示例

摘要

The International Technology Roadmap for Semiconductors projects that for the 32nm technology node, the drain extension junction depth, sheet resistance, and lateral abruptness will be in the range 5–9nm, 940Δ/□, and 1.4nm/decade respectively. The current approach to scaling the source/drain extension profiles has been to reduce the ion implantation energy. However, as the implant energy is reduced and the implant dose is increased, the peak dopant and damage concentrations are increased, leading to dopant clustering or precipitation, which in turn leads to solubility levels that severely limit the electrical activation that can be achieved. This dopant clustering can also contribute to the anomalous diffusion of dopants.; Thus, in order to successfully continue the scaling trend, we need to gain a better understanding of dopant clustering dynamics, and in particular the activation mechanisms. Once the activation mechanisms are better understood, we can pursue techniques to reduce junction depth and at the same time obtain high levels of dopant activation.; In this work, we have extensively studied the electrical activation of boron, phosphorus, and arsenic implanted into silicon. In particular, we have experimentally investigated how the activation mechanism of boron is different than arsenic and phosphorus, and what implications this difference has from a process technology point of view. Furthermore, modeling needs for simulation of dopant activation and diffusion have been explored, and the dynamics of boron clustering have been investigated with help of Kinetic Monte Carlo based atomistic simulations.; Moreover, we have analyzed the electrical activation behavior of boron in pre-amorphized samples, the interaction between fluorine and boron, and the role of annealing ramp-rates on boron and arsenic electrical activation and diffusion. Finally, by utilizing flash-assisted RTA, we have demonstrated how the understanding of dopant activation can be utilized to form ultra-shallow, highly active junctions.
机译:国际半导体技术路线图预测,对于32nm技术节点,漏极扩展结深度,薄层电阻和横向突变率将分别在5–9nm,940Δ/平方和1.4nm /十倍范围内。当前缩放源极/漏极扩展轮廓的方法是减少离子注入能量。然而,随着注入能量的减少和注入剂量的增加,峰值掺杂物和损伤浓度增加,导致掺杂物聚集或沉淀,这进而导致溶解度水平严重限制了可以实现的电活化。掺杂物的聚集也可能导致掺杂物的异常扩散。因此,为了成功地继续按比例缩放趋势,我们需要更好地了解掺杂剂团簇动力学,尤其是激活机制。一旦对激活机制有了更好的理解,我们就可以寻求降低结深的技术,同时获得高水平的掺杂剂激活。在这项工作中,我们已经广泛研究了注入硅中的硼,磷和砷的电活化。尤其是,我们已经通过实验研究了硼的活化机理与砷和磷的不同之处,以及从工艺技术的角度来看,这种区别的含义。此外,还探讨了模拟掺杂剂活化和扩散的建模需求,并借助基于动力学蒙特卡洛的原子模拟研究了硼团簇的动力学。此外,我们分析了预非晶化样品中硼的电活化行为,氟与硼之间的相互作用以及退火斜率对硼和砷的电活化和扩散的作用。最后,通过利用闪光灯辅助的RTA,我们已经展示了如何利用对掺杂剂激活的理解来形成超浅,高活性的结。

著录项

  • 作者

    Mokhberi, Ali.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号