首页> 外文期刊>Nuclear Instruments & Methods in Physics Research >Particle induced X-ray emission and ion dose distribution in a biological micro-beam: Geant4 Monte Carlo simulations
【24h】

Particle induced X-ray emission and ion dose distribution in a biological micro-beam: Geant4 Monte Carlo simulations

机译:生物微束中的粒子诱导X射线发射和离子剂量分布:Geant4蒙特卡洛模拟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The goal of a microbeam is to deliver a highly localized and small dose to the biological medium. This can be achieved by using a set of collimators that confine the charged particle beam to a very small spatial area of the order of microns in diameter. By using a system that combines an appropriate beam detection method that signals to a beam shut-down mechanism, a predetermined and counted number of energetic particles can be delivered to targeted biological cells. Since the shutter and the collimators block a significant proportion of the beam, there is a probability of the production of low energy X-rays and secondary electrons through interactions with the beam. There is little information in the biological microbeam literature on potential X-ray production. We therefore used Monte Carlo simulations to investigate the potential production of particle-induced X-rays and secondary electrons in the collimation system (which is predominantly made of tungsten) and the subsequent possible effects on the total absorbed dose delivered to the biological medium. We found, through the simulation, no-evidence of the escape of X-rays or secondary electrons from the collimation system for proton energies up to 3 MeV as we found that the thickness of the collimators is sufficient to reabsorb all of the generated low energy X-rays and secondary electrons. However, if the proton energy exceeds 3 MeV our simulations suggest that 10 keV X-rays can escape the collimator and expose the overlying layer of cells and medium. If the proton energy is further increased to 4.5 MeV or beyond, the collimator can become a significant source of 10 keV and 59 keV X-rays. These additional radiation fields could have effects on cells and these results should be verified through experimental measurement. We suggest that researchers using biological microbeams at higher energies need to be aware that cells may be exposed to a mixed LET radiation field and be careful in their interpretation of data. Two other factors can affect the pattern of dose deposition in the biological medium: the phase space distribution of the beam particles and the production of secondary electrons (known as δ-rays). We investigated this by projecting simulated particles oriented at small angles with the beam axis. For lower fluence (2.6 × 10~4 protons mm~(-2)), we determined that despite only the target cell being assumed to be hit by the particle beam, some significant level of radiation dose was, in fact, delivered to the adjacent cells. This was most probably due to secondary electrons. The simulation showed that two of the cells adjacent to the target cell received 42% and 5% of the dose delivered to the target cell per proton. When the incident fluence on the collimator was increased to 1.3 × 10~6 protons mm~(-2), it was observed that a significant number of protons deflected from the collimator spread into an area of 4340 μm~2. This is a significant spread when compared to the target area of 25 μm~2. The maximum number of particles that were delivered off-target was 25% of the particles delivered to the target cell. This equates to a probability of delivering 1 particle anywhere in an area of 4340 μm~2 for every 4 particles delivered to the target cell. This result has significant implications. Results of this work warrant a further investigation because if these results can be re validated, perhaps experimentally or through another simulation code, then they may have significant implications on the interpretation of published data from biological microbeam experiments.
机译:微束的目标是向生物介质传递高度局部化的小剂量。这可以通过使用一组准直仪来实现,该准直仪将带电粒子束限制在直径为微米量级的很小的空间区域。通过使用结合了适当的光束检测方法的系统,该方法会向光束关闭机构发出信号,可以将预定数量和数量的高能粒子输送到目标生物细胞。由于快门和准直仪会阻挡大部分光束,因此存在通过与光束相互作用而产生低能X射线和二次电子的可能性。生物微束文献中关于潜在X射线产生的信息很少。因此,我们使用蒙特卡洛模拟来研究准直系统(主要由钨制成)中由粒子感应产生的X射线和二次电子的潜在产生,以及随后对传递到生物介质的总吸收剂量的可能影响。通过仿真,我们发现对于质子能量高达3 MeV,X射线或二次电子没有从准直系统逸出的证据,因为我们发现准直器的厚度足以重新吸收所有产生的低能量X射线和二次电子。但是,如果质子能量超过3 MeV,我们的模拟表明10 keV X射线可以逃脱准直仪并暴露细胞和培养基的上层。如果质子能量进一步增加到4.5 MeV或更高,则准直仪将成为10 keV和59 keV X射线的重要来源。这些额外的辐射场可能会对细胞产生影响,这些结果应通过实验测量加以验证。我们建议研究人员在较高能量下使用生物微束,需要意识到细胞可能会暴露在混合的LET辐射场中,并且在解释数据时要格外小心。另外两个因素可以影响剂量在生物介质中的沉积方式:束粒子的相空间分布和二次电子的产生(称为δ射线)。我们通过投影与光束轴成小角度定向的模拟粒子来对此进行研究。对于较低的通量(2.6×10〜4质子mm〜(-2)),我们确定尽管仅假定目标细胞被粒子束击中,但实际上仍有一定水平的辐射剂量传递给了相邻单元格。这很可能是由于二次电子。模拟显示,与每个靶细胞相邻的两个细胞分别接受传递至靶细胞的剂量的42%和5%。当准直器上的入射通量增加到1.3×10〜6质子mm〜(-2)时,观察到从准直器偏转的大量质子扩散到4340μm〜2的区域。与目标面积25μm〜2相比,这是一个很大的差距。脱离靶标递送的最大颗粒数是递送至靶细胞的颗粒的25%。这等同于每4个被输送到目标细胞的颗粒在4340μm〜2的区域中的任意位置输送1个颗粒的可能性。这一结果具有重要意义。这项工作的结果值得进一步研究,因为如果可以通过实验或通过其他仿真代码对这些结果进行重新验证,那么它们可能会对解释生物微束实验的公开数据产生重大影响。

著录项

  • 来源
  • 作者单位

    TAB-104D, Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1;

    Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1;

    Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1;

    Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1;

    Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    microbeam; pixe; dose deposition;

    机译:微束像素剂量沉积;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号