...
首页> 外文期刊>Nuclear Instruments & Methods in Physics Research >Retention/reflection of hydrogen and surface evolution during cumulative bombardment of low-energy hydrogen on tungsten: A molecular dynamics study
【24h】

Retention/reflection of hydrogen and surface evolution during cumulative bombardment of low-energy hydrogen on tungsten: A molecular dynamics study

机译:低能氢在钨上的轰击过程中氢的保留/反射和表面析出:分子动力学研究

获取原文
获取原文并翻译 | 示例

摘要

Tungsten (W) is a primary candidate for plasma-facing materials (PFM) in future fusion devices because of its excellent properties. The knowledge of the initial deposition of low-energy hydrogen (H) on W surfaces from the atomic perspective is still deemed as the key to understanding the mechanism of radiation damage induced by the retained H in W. Therefore, it is necessary to carefully study the cumulative bombardment process of low-energy H on W surfaces. In this work, the retention and reflection of implanted H atoms were simulated by molecular dynamics (MD) and the evolution of these surfaces in the cumulative implantation process was analysed. The temperature effect (diffusion effect) and the time evolution were the main focus in this work. The cumulative simulation extended to times on the order of 0.1 mu s, longer than in most previous MD simulations. And the implanted fluxes are lower than previous MD works, thus closer to the real fluxes in fusion reactors. The channelling effect on the H implantation and H retention was dominant at low temperatures while the diffusion effect was notable at high temperatures. The binary collision theory can be used to describe the distribution of the reflected H atoms in the high-energy range due to the first couple of collisions. The retention of H atoms can induce surface expansion and some W atoms occupy a larger atomic volume than the normal volume. In the MD simulation with lower flux, no point defects (including sputtering atoms) were observed throughout the cumulative bombardment process especially at higher temperature. The defects induced by the implanted H could occur at lower temperature when the amount of the retained H reached a certain threshold. These results may be important for understanding the long-term micro-structural evolution of materials under irradiation.
机译:钨(W)由于其优异的性能而成为未来融合设备中面向等离子材料(PFM)的主要候选材料。从原子的角度了解低能氢(H)最初沉积在W表面的知识仍然被认为是理解W中保留的H引起的辐射损伤机理的关键。因此,有必要进行仔细研究低能H在W表面的累积轰击过程。在这项工作中,通过分子动力学(MD)模拟了注入的H原子的保留和反射,并分析了这些表面在累积注入过程中的演化。温度效应(扩散效应)和时间演化是这项工作的主要重点。累积模拟的时间延长到0.1毫秒左右,比大多数以前的MD模拟更长。并且注入的通量比以前的MD工作要低,因此更接近聚变反应堆中的实际通量。在低温下,对H注入和H保留的沟道效应占主导地位,而在高温下,扩散效应显着。二元碰撞理论可用于描述由于第一对碰撞而在高能范围内反射的H原子的分布。 H原子的保留会引起表面膨胀,并且一些W原子比正常体积占据更大的原子体积。在具有较低通量的MD模拟中,尤其是在较高温度下,在整个累积轰击过程中均未观察到点缺陷(包括溅射原子)。当保留的H的量达到一定阈值时,由注入的H引起的缺陷可能会在较低的温度下发生。这些结果对于理解辐射下材料的长期微观结构演变可能很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号