首页> 外文期刊>Nuclear instruments and methods in physics research >A fast general-purpose clustering algorithm based on FPGAs for high-throughput data processing
【24h】

A fast general-purpose clustering algorithm based on FPGAs for high-throughput data processing

机译:基于FPGA的快速通用集群算法,用于高吞吐量数据处理

获取原文
获取原文并翻译 | 示例

摘要

We present a fast general-purpose algorithm for high-throughput clustering of data "with a two-dimensional organization". The algorithm is designed to be implemented with FPGAs or custom electronics. The key feature is a processing time that scales linearly with the amount of data to be processed. This means that clustering can be performed in pipeline with the readout, without suffering from combinatorial delays due to looping multiple times through all the data. This feature makes this algorithm especially well suited for problems where the data have high density, e.g. in the case of tracking devices working under high-luminosity condition such as those of LHC or super-LHC.rnThe algorithm is organized in two steps: the first step (core) clusters the data; the second step analyzes each cluster of data to extract the desired information. The current algorithm is developed as a clustering device for modern high-energy physics pixel detectors. However, the algorithm has much broader field of applications. In fact, its core does not specifically rely on the kind of data or detector it is working for, while the second step can and should be tailored for a given application. For example, in case of spatial measurement with silicon pixel detectors, the second step performs center of charge calculation. Applications can thus be foreseen to other detectors and other scientific fields ranging from HEP calorimeters to medical imaging.rnAn additional advantage of this two steps approach is that the typical clustering related calculations (second step) are separated from the combinatorial complications of clustering. This separation simplifies the design of the second step and it enables it to perform sophisticated calculations achieving offline quality in online applications. The algorithm is general purpose in the sense that only minimal assumptions on the kind of clustering to be performed are made.
机译:我们提出了一种快速通用算法,用于“具有二维组织”的数据的高吞吐量聚类。该算法旨在与FPGA或定制电子器件一起实现。关键特性是处理时间与要处理的数据量成线性比例。这意味着可以在具有读数的流水线中执行聚类,而不会因遍历所有数据多次而遭受组合延迟。此功能使该算法特别适用于数据密度较高的问题,例如对于在高亮度条件下工作的跟踪设备(例如LHC或super-LHC)。算法分为两个步骤:第一步(核心)对数据进行聚类;第二步对数据进行聚类。第二步分析每个数据簇以提取所需的信息。当前算法被开发为现代高能物理像素检测器的聚类设备。但是,该算法具有更广阔的应用领域。实际上,它的核心并不特别依赖于它正在处理的数据或检测器的种类,而第二步可以并且应该针对给定的应用进行定制。例如,在使用硅像素检测器进行空间测量的情况下,第二步执行电荷中心计算。因此,可以预见其在从HEP量热仪到医学成像的其他检测器和其他科学领域的应用。这两个步骤的另一个优点是,与聚类相关的典型计算(第二步)与聚类的组合复杂性分开了。这种分离简化了第二步的设计,并使它能够执行复杂的计算,从而在在线应用程序中实现离线质量。在仅对要执行的聚类类型做出最小假设的意义上,该算法是通用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号