首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment >Performance assessment of self-interrogation neutron resonance densitometry for spent nuclear fuel assay
【24h】

Performance assessment of self-interrogation neutron resonance densitometry for spent nuclear fuel assay

机译:核燃料分析中自审中子共振光密度法的性能评估

获取原文
获取原文并翻译 | 示例

摘要

Self-Interrogation Neutron Resonance Densitometry (SINRD) is one of several nondestructive assay (NDA) techniques being integrated into systems to measure spent fuel as part of the Next Generation Safeguards Initiative (NGSI) Spent Fuel Project. The NGSI Spent Fuel Project is sponsored by the US Department of Energy's National Nuclear Security Administration to measure plutonium in, and detect diversion of fuel pins from, spent nuclear fuel assemblies. SINRD shows promising capability in determining the ~(239)Pu and ~(235)U content in spent fuel. SINRD is a relatively low-cost and lightweight instrument, and it is easy to implement in the field. The technique makes use of the passive neutron source existing in a spent fuel assembly, and it uses ratios between the count rates collected in fission chambers that are covered with different absorbing materials. These ratios are correlated to key attributes of the spent fuel assembly, such as the total mass of ~(239)Pu and ~(235)U. Using count rate ratios instead of absolute count rates makes SINRD less vulnerable to systematic uncertainties. Building upon the previous research, this work focuses on the underlying physics of the SINRD technique: quantifying the individual impacts on the count rate ratios of a few important nuclides using the perturbation method; examining new correlations between count rate ratio and mass quantities based on the results of the perturbation study; quantifying the impacts on the energy windows of the filtering materials that cover the fission chambers by tallying the neutron spectra before and after the neutrons go through the filters; and identifying the most important nuclides that cause cooling-time variations in the count rate ratios. The results of these studies show that ~(235)U content has a major impact on the SINRD signal in addition to the ~(239)Pu content. Plutonium-241 and ~(241)Am are the two main nuclides responsible for the variation in the count rate ratio with cooling time. In short, this work provides insights into some of the main factors that affect the performance of SINRD, and it should help improve the hardware design and the algorithm used to interpret the signal for the SINRD technique. In addition, the modeling and simulation techniques used in this work can be easily adopted for analysis of other NDA systems, especially when complex systems like spent nuclear fuel are involved. These studies were conducted at Los Alamos National Laboratory.
机译:自审中子共振光密度法(SINRD)是作为下一代保障计划(NGSI)乏燃料项目的一部分而被集成到系统中以测量乏燃料的几种无损测定(NDA)技术之一。 NGSI乏燃料项目是由美国能源部国家核安全局赞助的,用于测量乏核燃料组件中的p并检测从乏核燃料组件中转移出的燃料销。 SINRD在测定乏燃料中的〜(239)Pu和〜(235)U含量方面显示出有希望的能力。 SINRD是一种相对低成本,轻巧的仪器,在现场易于实施。该技术利用了乏燃料组件中存在的被动中子源,并且利用了在裂变室中收集的计数率之间的比率,该裂变室被不同的吸收材料覆盖。这些比率与乏燃料组件的关键属性相关,例如〜(239)Pu和〜(235)U的总质量。使用计数率比率而不是绝对计数率可以使SINRD不受系统不确定性的影响。在先前研究的基础上,这项工作着重于SINRD技术的基本物理原理:使用微扰方法量化对几种重要核素计数率比率的个体影响;根据摄动研究的结果,检查计数率比与质量之间的新关联;通过计算中子通过过滤器之前和之后的中子光谱,量化对覆盖裂变室的过滤材料的能量窗口的影响;并确定导致计数时间比率冷却时间变化的最重要的核素。这些研究的结果表明,除了〜(239)Pu含量外,〜(235)U含量还对SINRD信号产生重大影响。 241 241和〜(241)Am是导致计数率比率随冷却时间变化的两个主要核素。简而言之,这项工作提供了对影响SINRD性能的一些主要因素的见解,它应该有助于改善硬件设计和用于SINRD技术的信号解释算法。此外,这项工作中使用的建模和仿真技术可以轻松地用于其他NDA系统的分析,尤其是在涉及像乏核燃料这样的复杂系统时。这些研究是在洛斯阿拉莫斯国家实验室进行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号