首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment >Testing and simulation of silicon photomultiplier readouts for scintillators in high-energy astronomy and solar physics
【24h】

Testing and simulation of silicon photomultiplier readouts for scintillators in high-energy astronomy and solar physics

机译:高能天文学和太阳物理学中用于闪烁体的硅光电倍增管读数的测试和模拟

获取原文
获取原文并翻译 | 示例

摘要

Space-based gamma-ray detectors for high-energy astronomy and solar physics face severe constraints on mass, volume, and power, and must endure harsh launch conditions and operating environments. Historically, such instruments have usually been based on scintillator materials due to their relatively low cost, inherent ruggedness, high stopping power, and radiation hardness. New scintillator materials, such as LaBr_3:Ce, feature improved energy and timing performance, making them attractive for future astronomy and solar physics space missions in an era of tightly constrained budgets. Despite this promise, the use of scintillators in space remains constrained by the volume, mass, power, and fragility of the associated light readout device, typically a vacuum photomultiplier tube (PMT). In recent years, silicon photomultipliers (SiPMs) have emerged as promising alternative light readout devices that offer gains and quantum efficiencies similar to those of PMTs, but with greatly reduced mass and volume, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. In order for SiPMs to replace PMTs in space-based instruments, however, it must be shown that they can provide comparable performance, and that their inherent temperature sensitivity can be corrected for. To this end, we have performed extensive testing and modeling of a small gamma-ray spectrometer composed of a 6 mm × 6 mm SiPM coupled to a 6 mm × 6 mm × 10 mm LaBr_3:Ce crystal. A custom readout board monitors the temperature and adjusts the bias voltage to compensate for gain variations. We record an energy resolution of 5.7% (FWHM) at 662 keV at room temperature. We have also performed simulations of the scintillation process and optical light collection using Geant4, and of the SiPM response using the GosSiP package. The simulated energy resolution is in good agreement with the data from 22 keV to 662 keV. Above ~ 1 MeV, however, the measured energy resolution is systematically worse than the simulations. This discrepancy is likely due to the high input impedance of the readout board front-end electronics, which introduces a non-linear saturation effect in the SiPM for large light pulses. Analysis of the simulations indicates several additional steps that must be taken to optimize the energy resolution of SiPM-based scintillator detectors.
机译:用于高能天文学和太阳物理学的天基伽马射线探测器在质量,体积和功率上面临严格的限制,并且必须承受恶劣的发射条件和运行环境。从历史上看,这种仪器由于其相对较低的成本,固有的坚固性,高的制动力和辐射硬度而通常基于闪烁体材料。新的闪烁体材料,例如LaBr_3:Ce,具有改进的能量和计时性能,使其在预算紧缩的时代对未来的天文学和太阳物理太空任务具有吸引力。尽管有这种希望,但在空间中使用闪烁体仍然受到相关光读取设备(通常是真空光电倍增管(PMT))的体积,质量,功率和易碎性的限制。近年来,硅光电倍增器(SiPM)成为有前途的替代光读出设备,其增益和量子效率与PMT相似,但质量和体积大大减小,坚固耐用,对电压要求低,并且对磁场不敏感。但是,为了使SiPM替代天基仪器中的PMT,必须证明它们可以提供可比的性能,并且可以校正其固有的温度敏感性。为此,我们已经对由6 mm×6 mm SiPM耦合到6 mm×6 mm×10 mm LaBr_3:Ce晶体组成的小型伽马射线光谱仪进行了广泛的测试和建模。定制的读出板可监控温度并调整偏置电压以补偿增益变化。我们在室温下662 keV处记录了5.7%(FWHM)的能量分辨率。我们还使用Geant4对闪烁过程和光收集进行了仿真,并使用GosSiP封装对SiPM响应进行了仿真。模拟的能量分辨率与22 keV至662 keV的数据非常吻合。但是,高于〜1 MeV时,测得的能量分辨率在系统上比模拟差。这种差异可能是由于读出板前端电子设备的高输入阻抗所致,对于大光脉冲,SiPM引入了非线性饱和效应。仿真分析表明,必须采取几个额外的步骤来优化基于SiPM的闪烁体探测器的能量分辨率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号