首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. B, Beam Interactions with Materials and Atoms >PulseDL: A reconfigurable deep learning array processor dedicated to pulse characterization for high energy physics detectors
【24h】

PulseDL: A reconfigurable deep learning array processor dedicated to pulse characterization for high energy physics detectors

机译:PULSEDL:一种可重构的深度学习阵列处理器,专用于高能物理检测器的脉冲表征

获取原文
获取原文并翻译 | 示例

摘要

Neural network models show promising speed and accuracy for online and on-site data analysis in high energy physics. In this report, we discuss a multi-functional neural computing chip called PulseDL for measurement of pulse characteristics. We adopted a structure with outside RISC CPU and processing engines in PulseDL for balanced power and performance. Digital logic at register transfer level was specially designed with emphasis on thread level parallelism. Based on the hardware scheme, we co-designed the network architecture to best utilize the on-chip resources. Convolution, deconvolution and fully-connected matrix multiplication of the network were fitted into the hardware with reconfiguration during runtime. The chip has been taped out under the GSMCR013 130 nm process, with 4.9 mm × 4.9 mm area, at least 25 MHz working frequency and 1.2 V core voltage. Measured by post-layout simulations, the peak power efficiency of the chip was estimated to be about 12 giga operations per second per watt.
机译:神经网络模型在高能物理学中显示了在线和现场数据分析的有希望的速度和准确性。在本报告中,我们讨论了一种称为PULSEDL的多功能神经计算芯片,用于测量脉冲特性。我们采用了具有RISC CPU外部的结构和Pulsedl的处理发动机,以实现平衡的电源和性能。寄存器传输级别的数字逻辑专门设计,重点是线级并行性。基于硬件方案,我们共同设计了网络架构,以最佳利用片上资源。在运行时期间,网络的卷积,折垃圾和完全连接的矩阵乘法拟合到硬件中。芯片已在GSMCR013 130 NM工艺下占用,4.9mm×4.9 mm面积,至少25 MHz的工作频率和1.2 V核电压。通过后布局模拟测量,芯片的峰值功率效率估计为每瓦的每秒约12千兆。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号