【24h】

An improved PET image reconstruction method based on super-resolution

机译:一种基于超分辨率的改进PET图像重建方法

获取原文
获取原文并翻译 | 示例

摘要

Positron emission tomography (PET) is a non-invasive high-end examination that can quantitatively detect early disease stages. It complements information provided by functional and anatomical imaging. Therefore, PET is widely used clinically early on in the process of diagnosing malignant tumors or lesions. Fast and accurate reconstruction of PET images has been the subject of ongoing research. Patch-based regularization penalty likelihood reconstruction can reconstruct PET images more accurately, but it is sensitive to its algorithm's parameter values and requires a great deal of time to adjust parameters to achieve the best reconstruction. In this paper, we propose a novel method that uses random forests to improve PET imaging resolution at each iteration reconstruction step in the sinogram domain and the image domain; we refer to this method as patch-based super-resolution random forests reconstruction (patch-SRF). The patch-SRF algorithm allows the reconstruction to converge in advance and avoids the free-time adjustment process, achieving better reconstruction results despite relatively poor parameter settings.
机译:正电子发射断层扫描(PET)是一种无创的高端检查,可以定量检测疾病的早期阶段。它补充了功能和解剖学成像提供的信息。因此,PET在诊断恶性肿瘤或病变的过程中在临床上早已被广泛使用。快速准确地重建PET图像一直是正在进行的研究的主题。基于补丁的正则化罚分似然重建可以更准确地重建PET图像,但是它对算法的参数值敏感,需要大量时间来调整参数以实现最佳重建。在本文中,我们提出了一种新方法,该方法使用随机森林在正弦图域和图像域的每个迭代重建步骤中提高PET成像分辨率。我们将此方法称为基于补丁的超分辨率随机森林重建(patch-SRF)。 patch-SRF算法允许重建提前收敛,并且避免了空闲时间调整过程,尽管参数设置相对较差,但仍可获得更好的重建结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号