首页> 外文期刊>Nuclear instruments and methods in physics research >A neutron-gamma pulse shape discrimination method based on pure and mixed sources
【24h】

A neutron-gamma pulse shape discrimination method based on pure and mixed sources

机译:基于纯源和混合源的中子伽马脉冲形状判别方法

获取原文
获取原文并翻译 | 示例

摘要

We present a novel trainable approach to distinguish neutrons from gammas using a particle detector. Traditionally, Pulse Shape Discrimination (PSD) methods for this problem utilize an ad-hoc computation of tail signal energy to perform the detection. Our first contribution is a rigorous analysis of the performance of this existing approach on gold standard Time of Flight (TOF) data. While this approach performs well for high energy pulses, its accuracy drops dramatically as the pulse energy decreases. Our second contribution is a novel data driven classifier that is trained from two readily available sources: one that emits gamma particles (Cs-137), and another that emits a mixture of gamma and neutron particles (Cf-252). We test our approach using TOF experiments and show a marked improvement in accuracy over the traditional method for low false positive rates and low energies.
机译:我们提出了一种新颖的可训练方法,以使用粒子探测器将中子与伽马区分开。传统上,针对此问题的脉冲形状识别(PSD)方法利用尾信号能量的自组织计算来执行检测。我们的第一个贡献是对这种现有方法在黄金标准飞行时间(TOF)数据上的性能进行了严格的分析。尽管这种方法对于高能量脉冲表现良好,但随着脉冲能量的减少,其精度会急剧下降。我们的第二个贡献是一种新颖的数据驱动分类器,该分类器从两个容易获得的来源中训练而成:一个发射伽玛粒子(Cs-137),另一个发射伽玛粒子和中子粒子的混合物(Cf-252)。我们使用TOF实验测试了我们的方法,并显示出与传统方法相比,针对低假阳性率和低能量的准确性有了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号