首页> 外文期刊>Nuclear Instruments & Methods in Physics Research >QBDT, a new boosting decision tree method with systematical uncertainties into training for High Energy Physics
【24h】

QBDT, a new boosting decision tree method with systematical uncertainties into training for High Energy Physics

机译:QBDT,一种具有系统不确定性的新型助推决策树方法,用于高能物理训练

获取原文
获取原文并翻译 | 示例

摘要

A new boosting decision tree (BDT) method, QBDT, is proposed for the classification problem in the field of high energy physics (HEP). In many HEP researches, great efforts are made to increase the signal significance with the presence of huge background and various systematical uncertainties. Why not develop a BDT method targeting the significance directly? Indeed, the significance plays a central role in this new method. It is used to split a node in building a tree and to be also the weight contributing to the BDT score. As the systematical uncertainties can be easily included in the significance calculation, this method is able to learn about reducing the effect of the systematical uncertainties via training. Taking the search of the rare radiative Higgs decay in proton-proton collisions pp - h+X - gamma tau(+)tau(-)+X as example, QBDT and the popular Gradient BDT (GradBDT) method are compared. QBDT is found to reduce the correlation between the signal strength and systematical uncertainty sources and thus to give a better significance. The contribution to the signal strength uncertainty from the systematical uncertainty sources using the new method is 50-85 % of that using the GradBDT method.
机译:针对高能物理(HEP)领域的分类问题,提出了一种新的提升决策树(BDT)方法QBDT。在许多HEP研究中,由于存在巨大的背景和各种系统性的不确定性,人们做出了巨大的努力来提高信号的重要性。为什么不开发直接针对重要性的BDT方法呢?确实,重要性在这种新方法中起着核心作用。它用于在构建树时拆分节点,并且还作为有助于BDT得分的权重。由于系统不确定性可以很容易地包括在重要性计算中,因此该方法能够通过训练来学习减少系统不确定性的影响。以质子-质子碰撞pp-> h + X->γtau(+)tau(-)+ X的稀有辐射希格斯衰变的搜索为例,比较了QBDT和流行的Gradient BDT(GradBDT)方法。发现QBDT可以降低信号强度与系统不确定性源之间的相关性,从而具有更好的意义。使用新方法,系统不确定性源对信号强度不确定性的贡献是使用GradBDT方法的信号强度不确定性的50-85%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号